Citation: Qing-Tang ZHANG, Zong-Qiang XU, Qi-Qi SHU, Fei LIAN. Preparation and lithium storage properties of nitrogen, sulfur heteroatom hard carbon by pyrolysis of conjugated microporous polymers[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 45-54. doi: 10.11862/CJIC.2022.263 shu

Preparation and lithium storage properties of nitrogen, sulfur heteroatom hard carbon by pyrolysis of conjugated microporous polymers

Figures(9)

  • A bottom-up approach was employed to build a thiazole-containing conjugated microporous polymer (NSCMP) by choosing bromo-thiazole and triacetylene benzene as monomers. The pyrolyzation and KOH-assisted pyrolyzation of NSCMP were performed to obtain the N, S heteroatom hard carbon (NSHC) and KOH-activated NSHC (KNSHC). NSHC and KNSHC were further characterized by scanning electronic microscope, energy-dispersive spectra (EDS), nitrogen adsorption-desorption, galvanostatic charge-discharging test, etc. The EDS revealed that the N and S mass fractions of KNSHC were 10.42% and 2.23%, respectively. The specific surface area of KNSHC was as high as 2 140 m2·g-1, which was distinctly higher than that of NSHC (657 m2·g-1). The specific capacity of KNSHC after 500 cycles at 0.2 A·g-1 was as high as 946.2 mAh·g-1, while that of NSHC was only 493.7 mAh·g-1. The excellent electrochemical performance of KNSHC may be due to the synergistic effect of N and S heteroatoms as well as the unique porous structure.
  • 加载中
    1. [1]

      Rajkamal A, Thapa R. Carbon allotropes as anode material for lithiumion batteries[J]. Adv. Mater. Technol., 2019,4(10)1900307. doi: 10.1002/admt.201900307

    2. [2]

      Hasani A H, Mansor M, Kumaran V, Zuhdi A W M, Ying Y J, Hannan M A, Hamid F A, Rahman M S A, Salim N A. Thermal behavior of lithium-ion battery in microgrid application: Impact and management system[J]. Int. J. Energy Res., 2020,45(4):4967-5005.

    3. [3]

      Roy P, Srivastava S K. Nanostructured anode materials for lithium ion batteries[J]. J. Mater. Chem. A, 2015,3(6):2454-2484. doi: 10.1039/C4TA04980B

    4. [4]

      WANG J J, ZHANG J, WANG J Y, WANG L, LI X K. Effect of heat treatment on structure and lithium ion storage of N-rich carbon nanofibers[J]. Chinese J. Inorg. Chem., 2020,36(1):31-39.  

    5. [5]

      Yuan Y, Chen Z W, Yu H X, Zhang X K, Liu T T, Xia M T, Zheng R T, Shui M, Shu J. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Mater., 2020,32:65-90. doi: 10.1016/j.ensm.2020.07.027

    6. [6]

      Zhang Q T, Dai Q Q, Yan C, Su C, Li A. Nitrogen-doped porous carbon nanoparticle derived from nitrogen containing conjugated microporous polymer as high performance lithium battery anode[J]. J. Alloy. Compd., 2017,714:204-212. doi: 10.1016/j.jallcom.2017.04.207

    7. [7]

      Orthner H, Wiggers H, Loewenich M, Kilian S, Bade S, Lyubina J. Direct gas phase synthesis of amorphous Si/C nanoparticles as anode material for lithium ion battery[J]. J. Alloy. Compd., 2021,870159315. doi: 10.1016/j.jallcom.2021.159315

    8. [8]

      Fan P, Mu T S, Lou S F, Cheng X Q, Gao Y Z, Du C Y, Zuo P J, Ma Y L, Yin G P. Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries[J]. Electrochim. Acta, 2019,306:590-598. doi: 10.1016/j.electacta.2019.03.154

    9. [9]

      Zhang Q T, Dai Q Q, Li M, Wang X M, Li A. Incorporation of MnO nanoparticles inside porous carbon nanotubes originated from conjugated microporous polymers for lithium storage[J]. J. Mater. Chem. A, 2016,4(48):19132-19139. doi: 10.1039/C6TA08464H

    10. [10]

      Gan Q M, Wu B C, Qin N, Chen J L, Luo W, Xiao D J, Feng J, Liu W L, Zhu Y H, Zhang P S. Sandwich-like dual carbon layers coated NiO hollow spheres with superior lithium storage performances[J]. Electrochim. Acta, 2020,343(20)136121.

    11. [11]

      Wan H R, Hu X F. Sulfur-doped honeycomb-like carbon with outstanding electrochemical performance as an anode material for lithium and sodium ion batteries[J]. J. Colloid Interface Sci., 2020,558:242-250. doi: 10.1016/j.jcis.2019.09.124

    12. [12]

      Kou Y, Xu Y H, Guo Z Q, Jiang D L. Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework[J]. Angew. Chem. Int. Ed., 2011,50:8753-8757. doi: 10.1002/anie.201103493

    13. [13]

      Wang Z J, Ghasimi S, Landfester K, Zhang K A I. Highly porous conjugated polymers for selective oxidation of organic sulfides under visible light[J]. Chem. Commun., 2014,50:8177-8180. doi: 10.1039/C4CC02861A

    14. [14]

      Lu W G, Yuan D Q, Zhao D, Schilling C I, Plietzsch O, Muller T, Bräse S, Guenther J, Blümel J, Krishna R, Li Z, Zhou H C. Porous polymer networks: Synthesis, porosity, and applications in gas storage/separation[J]. Chem. Mater., 2010,22:5964-5972. doi: 10.1021/cm1021068

    15. [15]

      Dawson R, Adams D, Cooper A. Chemical tuning of CO2 sorption in robust nanoporous organic polymers[J]. Chem. Sci., 2011,2(6):1173-1177. doi: 10.1039/c1sc00100k

    16. [16]

      Lindemann P, Tsotsalas M, Shishatskiy S, Abetz V, Krolla-Sidenstein P, Azucena C, Monnereau L, Beyer A, Gölzhäuser A, Mugnaini V. Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation[J]. Chem. Mater., 2014,26:7189-7193. doi: 10.1021/cm503924h

    17. [17]

      Li R Z, Huang J F, Li J Y, Cao L Y, Zhong X Z, Yu A M, Lu G X. Nitrogen-doped porous hard carbons derived from shaddock peel for high-capacity lithiumion battery anodes[J]. J. Electroanal. Chem., 2020,862114044. doi: 10.1016/j.jelechem.2020.114044

    18. [18]

      Wang X, Weng Q H, Liu X Z, Wang X B, Tang D M, Tian W, Zhang C, Yi W, Liu D Q, Bando Y, Golberg D. Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage[J]. Nano Lett., 2014,14(3):1164-1171. doi: 10.1021/nl4038592

    19. [19]

      Cai D D, Wang S Q, Lian P C, Zhu X F, Li D D, Yang W S, Wang H H. Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries[J]. Electrochim. Acta, 2013,90(15):492-497.

    20. [20]

      Yuan Q H, Ma Z W, Chen J B, Huang Z R, Fang Z M, Zhang P, Lin Z D, Cui J. N, S-codoped activated carbon material with ultra-high surface area for high-performance supercapacitors[J]. Polymers, 2020,12(9):1-14.

    21. [21]

      Xin G X, Wang M M, Zhang W H, Song J L, Zhang B W. Preparation of high-capacitance N, S co-doped carbon nanospheres with hierarchical pores as supercapacitors[J]. Electrochim. Acta, 2018,291:168-176. doi: 10.1016/j.electacta.2018.08.137

    22. [22]

      Li Y J, Wang G L, Wei T, Fan Z J, Yan P. Nitrogen and sulfur codoped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy, 2016,19:165-175. doi: 10.1016/j.nanoen.2015.10.038

    23. [23]

      Zhao X C, Zhang Q, Chen C M, Zhang B S, Reiche S, Wang A Q, Zhang T, Schlögl R, Su D S. Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor[J]. Nano Energy, 2012,1(4):624-630. doi: 10.1016/j.nanoen.2012.04.003

    24. [24]

      Zhong S Y, Liu H Z, Wei D H, Hu J, Zhang H, Hou H S, Peng M X, Zhang G H, Duan H G. Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries[J]. Chem. Eng. J., 2020,395125054. doi: 10.1016/j.cej.2020.125054

    25. [25]

      Zhang D M, Chen Z W, Bai J, Yang C C, Jiang Q. Highly nitrogen doped porous carbon nanosheets as high-performance anode for potassium-ion batteries[J]. Batteries Supercaps, 2020,3(2):185-193. doi: 10.1002/batt.201900144

    26. [26]

      Zhou C L, Wang D K, Yang H, Li A, Song H H, Chen X H, Xing G J, Yang H J, Liu H Y. N, O co-doped urchin-like carbon microspheres as high-performance anode materials for lithium ion batteries[J]. Solid State Ionics, 2021,361115562.

    27. [27]

      Chao D L, Zhu C R, Yang P H, Xia X H, Liu J L, Wang J, Fan X F, Savilov S, Lin J Y, Fan H J, Shen Z X. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance[J]. Nat. Commun., 2016,712122. doi: 10.1038/ncomms12122

    28. [28]

      CHEN X D, KE J N, YAN P, LIU J H, WANG Y W, ZHAN C C, JIANG X D. Core-shell nanosphere cobalt-based metal-organic polymer: Preparation and lithium storage performance[J]. Chinese J. Inorg. Chem., 2022,38(5):836-842.  

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    10. [10]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(4)
  • Abstract views(1054)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return