Citation: Yan-Ling SONG, Qi-Yuan ZHANG, Ai-Hua YAO. Template-free electrodeposition and electrochromic performance of porous WO3·2H2O thin film[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 127-134. doi: 10.11862/CJIC.2022.260 shu

Template-free electrodeposition and electrochromic performance of porous WO3·2H2O thin film

  • Corresponding author: Ai-Hua YAO, 07182@tongji.edu.cn
  • Received Date: 3 August 2022
    Revised Date: 4 November 2022

Figures(6)

  • Compared with anhydrous WO3, tungsten oxide dihydrate (WO3·2H2O) shows superior electrochromic properties because of its unique layered structure and rich interlayer structural water. In this study, WO3·2H2O films were successfully fabricated on indium tin oxide (ITO) glass substrates using a facile, template-free cathodic electrodeposition method. The composition of the electrodeposition solution was optimized by modifying the volume of hydrogen peroxide (H2O2) added into the solution, and thus highly porous films were obtained. The thus deposited WO3·2H2O films exhibited excellent electrochromic performance, including significant optical contrast of over 90% at 633 nm, a fast switching speed of fewer than 10 s, and a long cycling lifetime (90% original optical modulation was retained after 10 000 cycles).
  • 加载中
    1. [1]

      Huang Y, Wang B S, Chen F X, Han Y, Zhang W S, Wu X K, Li R, Jiang Q Y, Jia X L, Zhang R F. Electrochromic materials based on ions insertion and extraction[J]. Adv. Opt. Mater., 2022,102101783. doi: 10.1002/adom.202101783

    2. [2]

      Pan J B, Zheng R Z, Wang Y, Ye X K, Wan Z Q, Jia C Y, Weng X L, Xie J L, Deng L J. A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window[J]. Sol. Energy Mater. Sol. Cells, 2020,207110337. doi: 10.1016/j.solmat.2019.110337

    3. [3]

      Granqvist C G. Electrochromics for smart windows: Oxide-based thin films and devices[J]. Thin Solid Films, 2014,564:1-38. doi: 10.1016/j.tsf.2014.02.002

    4. [4]

      Wang L, Guo M R, Zhan J, Jiao X L, Chen D R, Wang T. A new design of an electrochromic energy storage device with high capacity, long cycle lifetime and multicolor display[J]. J. Mater. Chem. A, 2020,8:17098-17105. doi: 10.1039/D0TA04824K

    5. [5]

      Wu W, Wang M, Ma J M, Cao Y L, Deng Y H. Electrochromic metal oxides: Recent progress and prospect[J]. Adv. Electron. Mater., 2018,41800185. doi: 10.1002/aelm.201800185

    6. [6]

      Wang Y A, Meng Z H, Chen H, Li T, Zheng D J, Xu Q C, Wang H, Liu X Y, Guo W X. Pulsed electrochemical deposition of porous WO3 on silver networks for highly flexible electrochromic devices[J]. J. Mater. Chem. C, 2019,7:1966-1973. doi: 10.1039/C8TC05698F

    7. [7]

      Sun W M, Yeung M T, Lech A T, Lin C W, Lee C, Li T Q, Duan X F, Zhou J, Kaner R B. High surface area tunnels in hexagonal WO3[J]. Nano Lett., 2015,15:4834-4838. doi: 10.1021/acs.nanolett.5b02013

    8. [8]

      Mitchell J B, Lo W C, Genc A, LeBeau J, Augustyn V. Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide[J]. Chem. Mater., 2017,29:3928-3937. doi: 10.1021/acs.chemmater.6b05485

    9. [9]

      Bi Z J, Li X M, Chen Y B, He X L, Xu X K, Gao X D. Large-scale multifunctional electrochromic-energy storage device based on tungsten trioxide monohydrate nanosheets and Prussian white[J]. ACS Appl. Mater. Interfaces, 2017,9:29872-29880. doi: 10.1021/acsami.7b08656

    10. [10]

      Xie Z, Gao L N, Liang B, Wang X F, Chen G, Liu Z, Chao J F, Chen D, Shen G Z. Fast fabrication of a WO3·2H 2O thin film with improved electrochromic properties[J]. J. Mater. Chem., 2012,22:19904-19910. doi: 10.1039/c2jm33622g

    11. [11]

      Wang Z, Gong W B, Wang X Y, Chen Z G, Chen X L, Chen J, Sun H Z, Song G, Cong S, Geng F X, Zhao Z G. Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pseudocapacitor transition[J]. ACS Appl. Mater. Interfaces, 2020,12:33917-33925. doi: 10.1021/acsami.0c08270

    12. [12]

      Cai G F, Cui M Q, Kumar V, Darmawan P, Wang J X, Wang X, Eh A L, Qian K, Lee P S. Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity[J]. Chem. Sci., 2016,7:1373-1382. doi: 10.1039/C5SC03727A

    13. [13]

      Baeck S H, Choi K S, Stucky J G D, McFarland E W. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films[J]. Adv. Mater., 2003,15:1269-1273. doi: 10.1002/adma.200304669

    14. [14]

      Qi C X, Tan Z, Feng Z H, Yu L P. Fabrication of bowl-like porous WO3 film by colloidal crystal template-assisted electrodeposition method[J]. J. Mater. Sci. Mater. Electron., 2014,25:1553-1558.

    15. [15]

      Giannouli M, Leftheriotis G. The effect of precursor aging on the morphology and electrochromic performance of electrodeposited tungsten oxide films[J]. Sol. Energy Mater. Sol. Cells, 2011,95:1932-1939. doi: 10.1016/j.solmat.2011.02.024

    16. [16]

      Kim C Y, Lee M, Huh S H, Kim E K. WO3 thin film coating from H2O-controlled peroxotungstic acid and its electrochromic properties[J]. J. Sol-Gel Sci. Technol., 2010,53:176-183. doi: 10.1007/s10971-009-2074-3

    17. [17]

      Yamanaka K. Electrodeposited films from aqueous tungstic acidhydrogen peroxide solutions for electrochromic display devices[J]. J. Appl. Phys., 1987,26:1884-1890. doi: 10.1143/JJAP.26.1884

    18. [18]

      Nakajima H, Tanaka H, Hibino M, Kudo T, Mizuno N. Reaction of nitrides of molybdenum and tungsten with hydrogen peroxide to form inorganic proton conductors[J]. Bull. Chem. Soc. Jpn., 1998,71:955-960. doi: 10.1246/bcsj.71.955

    19. [19]

      LIN H Q, LI H M, YU X Y, ZHAI H S, YUAN Y Z, WAN H L. Raman study of transformation behaviors of tungsten-containing peroxo species affected by different precursors and solution acidities[J]. Acta Chim. Sinica, 2004,62(18):1780-1784. doi: 10.3321/j.issn:0567-7351.2004.18.021

    20. [20]

      Pecquenard B, Castro-Garcia S, Livage J, Zavalij P Y, Whittingham S, Thouvenot R. Structure of hydrated tungsten peroxides[WO2(O2) H2O]·nH2O[J]. Chem. Mater., 1998,10:1882-1888. doi: 10.1021/cm980045n

    21. [21]

      Wang S L, Dou K, Zou Y S, Dong Y H, Li J B, Ju D, Zeng H B. Assembling tungsten oxide hydrate nanocrystal colloids formed by laser ablation in liquid into fast-response electrochromic films[J]. J. Colloid Interface Sci., 2017,489:85-91. doi: 10.1016/j.jcis.2016.08.072

    22. [22]

      Meulenkamp E A. Mechanism of WO3 electrodeposition from peroxy-tungstate solution[J]. J. Electrochem. Soc., 1997,144:1664-1671. doi: 10.1149/1.1837657

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(11)
  • Abstract views(1205)
  • HTML views(301)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return