Citation: Meng-Meng FAN, Xiao-Jiang WEN, Zi-Yang TAO, Qiang ZHAO, Jin-Ping LI, Guang LIU. Construction and photoelectrochemical water oxidation performance of BiVO4/ZnFe2O4 homotypic heterojunction photoanode[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 23-31. doi: 10.11862/CJIC.2022.257 shu

Construction and photoelectrochemical water oxidation performance of BiVO4/ZnFe2O4 homotypic heterojunction photoanode

  • Corresponding author: Guang LIU, liuguang@tyut.edu.cn
  • Received Date: 27 May 2022
    Revised Date: 21 October 2022

Figures(8)

  • The combination of photogenerated electron-hole pairs is considered one of the important reasons for limiting the photoelectrocatalytic conversion efficiency of BiVO4 photoanode. In this work, BiVO4/ZnFe2O4 homotypic heterojunction was constructed by a simple hydrothermal method and calcination process. The obtained BiVO4/ ZnFe2O4 photoanode achieved an excellent photocurrent density of 3.33 mA·cm-2 at 1.23 V (vs RHE), which was 2 times higher than that of pure BiVO4 (1.20 mA·cm-2). Related structure and performance tests showed that BiVO4 and ZnFe2O4 can form a bandgap staggered n-n heterojunction, which enables the photogenerated carriers to be effectively separated and participate in the water oxidation process, thus improving the photoelectrochemical water oxidation activities of BiVO4 photoanode.
  • 加载中
    1. [1]

      Lee M G, Yang J W, Park H, Moon C W, Andoshe D M, Park J, Moon C K, Lee T H, Choi K S, Cheon W S, Kim J J, Jang H W. Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots[J]. Nano-Micro Lett., 2022,14(1)48. doi: 10.1007/s40820-022-00795-8

    2. [2]

      Wang P P, Fu P, Ma J P, Gao Y Y, Li Z, Wang H, Fan F T, Shi J Y, Li C. Ultrathin cobalt oxide interlayer facilitated hole storage for sustained water oxidation over composited tantalum nitride photoanodes[J]. ACS Catal., 2021,11(20):12736-12744. doi: 10.1021/acscatal.1c03298

    3. [3]

      Wang Y X, Chen D M, Zhang J N, Balogun M S, Wang P S, Tong Y X, Huang Y C. Charge relays via dual carbon-actions on nanostructured BiVO4 for high performance photoelectrochemical water splitting[J]. Adv. Funct. Mater., 2022,32(13)2112738. doi: 10.1002/adfm.202112738

    4. [4]

      Yoon K Y, Park J, Jung M, Ji S G, Lee H, Seo J H, Kwak M J, Seok I S, Lee J H, Jang J H. NiFeOx decorated Ge-hematite/perovskite for an efficient water splitting system[J]. Nat. Commun., 2021,12(1)4309. doi: 10.1038/s41467-021-24428-7

    5. [5]

      Zhu T, Chong M N, Chan E S. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: A review[J]. ChemSusChem, 2014,7(11):2974-2997. doi: 10.1002/cssc.201402089

    6. [6]

      Liu G Q, Li F, Zhu Y, Li J Y, Sun L C. Cobalt doped BiVO4 with rich oxygen vacancies for efficient photoelectrochemical water oxidation[J]. RSC Adv., 2020,10(48):28523-28526. doi: 10.1039/D0RA01961E

    7. [7]

      Yalavarthi R, Zbořil R, Schmuki P, Naldoni A, Kment Š. Elucidating the role of surface states of BiVO4 with Mo doping and a CoOOH co-catalyst for photoelectrochemical water splitting[J]. J. Power Sources, 2021,483229080. doi: 10.1016/j.jpowsour.2020.229080

    8. [8]

      Pan J B, Wang B H, Wang J B, Ding H Z, Zhou W, Liu X, Zhang J R, Shen S, Guo J K, Chen L, Au C T, Jiang L L, Yin S F. Activity and sta-bility boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation[J]. Angew. Chem. Int. Ed., 2021,60(3):1433-1440. doi: 10.1002/anie.202012550

    9. [9]

      Zhang H P, Li H L, Wang Z Y, Zheng Z, Wang P, Liu Y Y, Zhang X Y, Qin X Y, Dai Y, Huang B B. Fabrication of BiVO4 photoanode consisted of mesoporous nanoparticles with improved bulk charge separation efficiency[J]. Appl. Catal. B-Environ., 2018,238:586-591. doi: 10.1016/j.apcatb.2018.07.050

    10. [10]

      Kim T W, Ping Y, Galli G A, Choi K S. Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting[J]. Nat. Commun., 2015,68769. doi: 10.1038/ncomms9769

    11. [11]

      Wang X, Ye K H, Yu X, Zhu J, Zhu Y, Zhang Y. Polyaniline as a new type of hole-transporting material to significantly increase the solar water splitting performance of BiVO4 photoanodes[J]. J. Power Sources, 2018,391:34-40. doi: 10.1016/j.jpowsour.2018.04.074

    12. [12]

      Xu H M, Fan W Q, Zhao Y, Chen B Y, Gao Y, Chen X, Xu D B, Shi W D. Amorphous iron-borate decorated electrochemically treated-BiVO4 photoanode for efficient photoelectrochemical water splitting[J]. Chem. Eng. J., 2021,411128480. doi: 10.1016/j.cej.2021.128480

    13. [13]

      Zhang M Y, Antony R P, Chiam S Y, Abdi F F, Wong L H. Under-standing the roles of NiOx in enhancing the photoelectrochemical performance of BiVO4 photoanodes for solar water splitting[J]. ChemSusChem, 2019,12(9):2022-2028. doi: 10.1002/cssc.201801780

    14. [14]

      Tang F M, Cheng W R, Su H, Zhao X, Liu Q H. Smoothing surface trapping states in 3D coral-like CoOOH-wrapped-BiVO4 for efficient photoelectrochemical water oxidation[J]. ACS Appl. Mater. Interfaces, 2018,10(7):6228-6234. doi: 10.1021/acsami.7b15674

    15. [15]

      Cheng B Y, Yang J S, Cho H W, Wu J J. Fabrication of an efficient BiVO 4-TiO2 heterojunction photoanode for photoelectrochemical water oxidation[J]. ACS Appl. Mater. Interfaces, 2016,8(31):20032-20039. doi: 10.1021/acsami.6b05489

    16. [16]

      Kim K, Moon J H. Three-dimensional bicontinuous BiVO4/ZnO photoanodes for high solar water-splitting performance at low bias potential[J]. ACS Appl. Mater. Interfaces, 2018,10(40):34238-34244. doi: 10.1021/acsami.8b11241

    17. [17]

      Li J L, Yuan H, Li J X, Zhang W J, Liu Y Q, Liu N, Cao H J, Jiao Z B. The significant role of the chemically bonded interfaces in BiVO4/ ZnO heterostructures for photoelectrochemical water splitting[J]. Appl. Catal. B-Environ., 2021,285119833. doi: 10.1016/j.apcatb.2020.119833

    18. [18]

      Rao P M, Cai L, Liu C, Cho I S, Lee C H, Weisse J M, Yang P, Zheng X. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelec-trochemical water oxidation[J]. Nano Lett., 2014,14(2):1099-1105. doi: 10.1021/nl500022z

    19. [19]

      Gao Y Q, Yang G Q, Dai Y J, Li X L, Gao J F, Li N, Qiu P, Ge L. Electrodeposited Co-substituted LaFeO3 for enhancing the photoelec-trochemical activity of BiVO4[J]. ACS Appl. Mater. Interfaces, 2020,12(15):17364-17375. doi: 10.1021/acsami.9b21386

    20. [20]

      Xiong B, Wu Y T, Du J Y, Li J, Liu B Y, Ke G L, He H C, Zhou Y. Cu3Mo 2O9/BiVO 4 heterojunction films with integrated thermodynamic and kinetic advantages for solar water oxidation[J]. ACS Sustain. Chem. Eng., 2020,8(37):14082-14090. doi: 10.1021/acssuschemeng.0c04561

    21. [21]

      Yue P F, She H D, Zhang L, Niu B, Lian R, Huang J W, Wang L, Wang Q Z. Super-hydrophilic CoAl-LDH on BiVO4 for enhanced photoelectrochemical water oxidation activity[J]. Appl. Catal. B-Environ., 2021,286119875. doi: 10.1016/j.apcatb.2021.119875

    22. [22]

      Huang J W, Liu T T, Wang R F, Zhang M Y, Wang L, She H D, Wang Q Z. Facile loading of cobalt oxide on bismuth vanadate: proved construction of p-n junction for efficient photoelectrochemical water oxidation[J]. J. Colloid Interface Sci., 2020,570:89-98. doi: 10.1016/j.jcis.2020.02.109

    23. [23]

      Marschall R. Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Adv. Funct. Mater., 2014,24(17):2421-2440. doi: 10.1002/adfm.201303214

    24. [24]

      Wang Q Z, Niu T J, Wang L, Yan C X, Huang J W, He J J, She H D, Su B T, Bi Y P. FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting[J]. Chem. Eng. J., 2018,337:506-514. doi: 10.1016/j.cej.2017.12.126

    25. [25]

      Zhao F, Li N, Wu Y, Wen X J, Zhao Q, Liu G, Li J P. BiVO4 photoanode decorated with cobalt-manganese layered double hydroxides for enhanced photoelectrochemical water oxidation[J]. Int. J. Hydrog. Energy, 2020,45(56):31902-31912. doi: 10.1016/j.ijhydene.2020.08.224

    26. [26]

      Kim J H, Jang Y J, Choi S H, Lee B J, Kim J H, Park Y B, Nam C M, Kim H G, Lee J S. A multitude of modifications strategy of ZnFe2O4 nanorod photoanodes for enhanced photoelectrochemical water split-ting activity[J]. J. Mater. Chem. A, 2018,6(26):12693-12700. doi: 10.1039/C8TA02161A

    27. [27]

      Bai H Y, Li X, Zhao Y, Fan W Q, Liu Y, Gao Y, Xu D B, Ding J R, Shi W D. Fabrication of BiVO4-Ni/Co 3O4 photoanode for enhanced photoelectrochemical water splitting[J]. Appl. Surf. Sci., 2021,538148150. doi: 10.1016/j.apsusc.2020.148150

    28. [28]

      Li S S, Su Y K. Improvement of the performance in Cr-doped ZnO memory devices via control of oxygen defects[J]. RSC Adv., 2019,9(6):2941-2947. doi: 10.1039/C8RA10112D

    29. [29]

      Özacar M, Poyraz A S, Genuino H C, Kuo C H, Meng Y T, Suib S L. Influence of silver on the catalytic properties of the cryptomelane and Ag-hollandite types manganese oxides OMS-2 in the low-temperature CO oxidation[J]. Appl. Catal. A-Gen., 2013,462-463:64-74. doi: 10.1016/j.apcata.2013.04.027

    30. [30]

      Dom R, Subasri R, Hebalkar N Y, Chary A S, Borse P H. Synthesis of a hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using a rapid microwave irradiation method[J]. RSC Adv., 2012,2(33)12782. doi: 10.1039/c2ra21910g

    31. [31]

      Song H, Zhu L P, Li Y G, Lou Z R, Xiao M, Ye Z Z. Preparation of ZnFe2O4 nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures[J]. J. Mater. Chem. A, 2015,3(16):8353-8360. doi: 10.1039/C5TA00737B

    32. [32]

      Lian L, Hou L R, Zhou L, Wang L S, Yuan C Z. Rapid low-temperature synthesis of mesoporous nanophase ZnFe2O4 with enhanced lithium storage properties for Li-ion batteries[J]. RSC Adv., 2014,4(90):49212-49218. doi: 10.1039/C4RA08227C

    33. [33]

      Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. Am. Mineral., 2000,85(3/4):543-556.

    34. [34]

      Wang S C, Chen P, Yun J H, Hu Y X, Wang L Z. An electrochemi-cally treated BiVO4 photoanode for efficient photoelectrochemical water splitting[J]. Angew. Chem. Int. Ed., 2017,56(29):8500-8504. doi: 10.1002/anie.201703491

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    19. [19]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    20. [20]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

Metrics
  • PDF Downloads(12)
  • Abstract views(1484)
  • HTML views(321)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return