Citation: Zi-Xiang HAO, Yang CHEN, Lin-Rui WANG, Xiao-Li CUI. Synthesis of γ-Graphyne and Its Applications in the Fields of Energy Storage and Conversion[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2321-2341. doi: 10.11862/CJIC.2022.254 shu

Synthesis of γ-Graphyne and Its Applications in the Fields of Energy Storage and Conversion

Figures(17)

  • Alkyne carbon material is a novel two-dimensional carbon allotrope with good electrical conductivity and high specific surface area. The porous structure composed of sp2- and sp-hybridized carbon promotes charge transfer and ion transport, which endows alkyne carbon material with broad application prospects in the field of energy storage and conversion. Theoretically, γ-graphyne (γ-GY) has the highest stability among the γ-GY-like carbon materials due to its stable conjugated system and unique triangular pore structure, which promotes the ionic intercalation/ de-intercalation process in alkali metal ion batteries. Given its excellent semiconductor properties, γ-GY is also an ideal candidate for photoelectrochemical and photocatalytic oxygen evolution and hydrogen evolution. Besides, the molecular framework and electron configuration of γ-GY can be regulated by heteroatom doping or rational molecular structural design of organic precursors. This review summarized synthesis methods of γ-GY and its applications in lithium (sodium and potassium) ion batteries, electrocatalysis, and photocatalysis, then further proposed the challenges and opportunities in the energy field.
  • 加载中
    1. [1]

      Kratschmer W, Lamb L D, Fostiropoulos K, Huffman D R. Solid C60—A New Form of Carbon[J]. Nature, 1990,347(6291):354-358. doi: 10.1038/347354a0

    2. [2]

      Ugarte D. Curling and Closure of Graphitic Networks under Electron-Beam Irradiation[J]. Nature, 1992,359(6397):707-709. doi: 10.1038/359707a0

    3. [3]

      Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    4. [4]

      Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B. Architecture of Graphdiyne Nanoscale Films[J]. Chem. Commun., 2010,46(19):3256-3258. doi: 10.1039/b922733d

    5. [5]

      Li Q D, Li Y, Chen Y, Wu L L, Yang C F, Cui X L. Synthesis of γ-Graphyne by Mechanochemistry and Its Electronic Structure[J]. Carbon, 2018,136:248-254. doi: 10.1016/j.carbon.2018.04.081

    6. [6]

      Wu L L, Li Q D, Yang C F, Chen Y, Dai Z Q, Yao B Y, Zhang X Y, Cui X L. Ternary TiO2/MoSe2/γ-Graphyne Heterojunctions with Enhanced Photocatalytic Hydrogen Evolution[J]. J. Mater. Sci.-Mater. Electron., 2020,31(11):8796-8804. doi: 10.1007/s10854-020-03414-7

    7. [7]

      Zhang X Y, Wang H Q, Wu K, Li Q D, Shao Z P, Yang Q, Chen C D, Cui X L, Chen J P, Wang J. Two-Dimensional γ-Graphyne for Ultrafast Nonlinear Optical Applications[J]. Opt. Mater. Express, 2020,10(2):293-301. doi: 10.1364/OME.377354

    8. [8]

      Baughman R H, Eckhardt H, Kertesz M. Strcture-Property Predictions for New Planar Forms of Carbon-Layered Phases Containing sp2 and sp Atoms[J]. J. Chem. Phys., 1987,87(11):6687-6699. doi: 10.1063/1.453405

    9. [9]

      Zhang Y Y, Pei Q X, Wang C M. A Molecular Dynamics Investigation on Thermal Conductivity of Graphynes[J]. Comput. Mater. Sci., 2012,65:406-410. doi: 10.1016/j.commatsci.2012.07.044

    10. [10]

      Li J Q, Xie Z Q, Xiong Y, Li Z Z, Huang Q X, Zhang S Q, Zhou J Y, Liu R, Gao X, Chen C G, Tong L M, Zhang J, Liu Z F. Architecture of β-Graphdiyne-Containing Thin Film Using Modified Glaser-Hay Coupling Reaction for Enhanced Photocatalytic Property of TiO2[J]. Adv. Mater., 2017,29(19)1700421. doi: 10.1002/adma.201700421

    11. [11]

      Huang C S, Li Y J, Wang N, Xue Y R, Zuo Z C, Liu H B, Li Y L. Progress in Research into 2D Graphdiyne-Based Materials[J]. Chem. Rev, 2018,118(16):7744-7803. doi: 10.1021/acs.chemrev.8b00288

    12. [12]

      LI Y L, LI Y J. Graphyne: From Discovery to Application. Beijing: Science Press, 2018: 42-96

    13. [13]

      LI Y J, LI Y L. Chemical Modification and Functionalization of Graphdiyne[J]. Acta Phys.-Chim. Sin., 2018,34(9):992-1013.  

    14. [14]

      SHEN X Y, HE J J, WANG N, HUANG C S. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys.-Chim. Sin., 2018,34(9):1029-1047.  

    15. [15]

      Srinivasu K, Ghosh S K. Graphyne and Graphdiyne: Promising Materials for Nanoelectronics and Energy Storage Applications[J]. J. Phys. Chem. C, 2012,116(9):5951-5956. doi: 10.1021/jp212181h

    16. [16]

      Zhang Q Y, Tang C M, Zhu W H, Cheng C. Strain-Enhanced Li Storage and Diffusion on the Graphyne as the Anode Material in the Li-Ion Battery[J]. J. Phys. Chem. C, 2018,122(40):22838-22848. doi: 10.1021/acs.jpcc.8b05272

    17. [17]

      Ivanovskii A L. Graphynes and Graphdyines[J]. Progress in Solid State Chemistry, 2013,41(1):1-19.

    18. [18]

      LU X L, HAN Y Y, LU T B. Structure Characterization and Application of Graphdiyne in Photocatalytic and Electrocatalytic Reactions[J]. Acta Phys.-Chim. Sin., 2018,34(9):1014-1028.  

    19. [19]

      MA X Q. Graphynes for Photocatalytic and Photoelectrochemical Applications[J]. Progress in Chemistry, 2022,34(5):1042-1060.  

    20. [20]

      Jia Z Y, Li Y J, Zuo Z C, Liu H B, Huang C S, Li Y L. Synthesis and Properties of 2D Carbon-Graphdiyne[J]. Acc. Chem. Res., 2017,50(10):2470-2478. doi: 10.1021/acs.accounts.7b00205

    21. [21]

      Gao X, Liu H B, Wang D, Zhang J. Graphdiyne: Synthesis, Properties, and Applications[J]. Chem. Soc. Rev., 2019,48(3):908-936. doi: 10.1039/C8CS00773J

    22. [22]

      Jia Z Y, Li Y J, Zuo Z C, Liu H B, Huang C S, Li Y L. Synthesis and Properties of 2D Carbon—Graphdiyne[J]. Acc. Chem. Res., 2017,50(10):2470-2478. doi: 10.1021/acs.accounts.7b00205

    23. [23]

      Zuo Z C, Wang D, Zhang J, Lu F S, Li Y L. Synthesis and Applications of Graphdiyne-Based Metal-Free Catalysts[J]. Adv. Mater., 2019,31(13)1803762. doi: 10.1002/adma.201803762

    24. [24]

      Chen X Y, Jiang X, Yang N J. Graphdiyne Electrochemistry: Progress and Perspectives[J]. Small, 2022,18(24)2201135. doi: 10.1002/smll.202201135

    25. [25]

      He J J, Li X D, Lu T T, Shen X Y, Wang N, Huang C S. Graphdiyne Applied for Electrochemical Energy Storage[J]. Dalton Trans., 2019,48(39):14566-14574. doi: 10.1039/C9DT02862E

    26. [26]

      Li J F, Wang C, Zhang B, Wang Z H, Yu W J, Chen Y, Liu X K, Guo Z Y, Zhang H. Artificial Carbon Graphdiyne: Status and Challenges in Nonlinear Photonic and Optoelectronic Applications[J]. ACS Appl. Mater. Interfaces, 2020,12(44):49281-49296. doi: 10.1021/acsami.0c13030

    27. [27]

      Liu J M, Chen C Y, Zhao Y L. Progress and Prospects of Graphdiyne-Based Materials in Biomedical Applications[J]. Adv. Mater., 2019,31(42)1804386. doi: 10.1002/adma.201804386

    28. [28]

      Zhao Y, Chai L X, Yan X B, Huang W C, Fan T J, Al-Hartomy O A, Al-Ghamdi A, Wageh S, Al-Sehemi A G, Xie Z J, Zhang H. Characteristics, Properties, Synthesis and Advanced Applications of 2D Graphdiyne versus Graphene[J]. Mater. Chem. Front., 2022,6(5):528-552. doi: 10.1039/D1QM01342D

    29. [29]

      Xie C P, Wang N, Li X F, Xu G R, Huang C S. Research on the Preparation of Graphdiyne and Its Derivatives[J]. Chem.-Eur. J.,, 2020,26(3):569-583. doi: 10.1002/chem.201903297

    30. [30]

      Li Y J, He J Y, Shen H. Journey from Small-Molecule Diyne Structures to 2D Graphdiyne: Synthetic Strategies[J]. Chem.-Eur. J., 2020,26(54):12310-12321. doi: 10.1002/chem.202001898

    31. [31]

      Wang N, He J J, Wang K, Zhao Y J, Jiu T G, Huang C S, Li Y L. Graphdiyne-Based Materials: Preparation and Application for Electrochemical Energy Storage[J]. Adv. Mater., 2019,31(42)1803202. doi: 10.1002/adma.201803202

    32. [32]

      Wang Z Q, Qi L, Zheng Z Q, Xue Y R, Li Y L. 2D Graphdiyne: A Rising Star on the Horizon of Energy Conversion[J]. Chem. Asian J., 2021,16(21):3259-3271. doi: 10.1002/asia.202100858

    33. [33]

      Zhuo S F, Shi Y S, Liu L M, Li R Y, Shi L, Anjum D H, Han Y, Wang P. Dual-Template Engineering of Triple-Layered Nanoarray Electrode of Metal Chalcogenides Sandwiched with Hydrogen-Substituted Graphdiyne[J]. Nat. Commun., 2018,93132. doi: 10.1038/s41467-018-05474-0

    34. [34]

      He J J, Wang N, Yang Z, Shen X Y, Wang K, Huang C S, Yi Y P, Tu Z Y, Li Y L. Fluoride Graphdiyne as a Free-Standing Electrode Displaying Ultra-Stable and Extraordinary High Li Storage Perfor-mance[J]. Energy Environ. Sci., 2018,11(10):2893-2903. doi: 10.1039/C8EE01642A

    35. [35]

      Wang N, He J J, Tu Z Y, Yang Z, Zhao F H, Li X D, Huang C S, Wang K, Jiu T G, Yi Y P, Li Y L. Synthesis of Chlorine-Substituted Graphdiyne and Applications for Lithium-Ion Storage[J]. Angew. Chem. Int. Ed., 2017,56(36):10740-10745. doi: 10.1002/anie.201704779

    36. [36]

      Wang N, Li X D, Tu Z Y, Zhao F H, He J J, Guan Z Y, Huang C S, Yi Y P, Li Y L. Synthesis and Electronic Structure of Boron-Graphdiyne with an sp-Hybridized Carbon Skeleton and Its Application in Sodium Storage[J]. Angew. Chem. Int. Ed., 2018,57(15):3968-3973. doi: 10.1002/anie.201800453

    37. [37]

      Zuo Z C, Shang H, Chen Y H, Li J F, Liu H B, Li Y J, Li Y L. A Facile Approach for Graphdiyne Preparation Under Atmosphere for an Advanced Battery Anode[J]. Chem. Commun., 2017,53(57):8074-8077. doi: 10.1039/C7CC03200E

    38. [38]

      Wang F, Zuo Z C, Shang H, Zhao Y J, Li Y L. Ultrafastly Interweaving Graphdiyne Nanochain on Arbitrary Substrates and Its Performance as a Supercapacitor Electrode[J]. ACS Appl. Mater. Interfaces, 2019,11(3):2599-2607. doi: 10.1021/acsami.8b01383

    39. [39]

      Liu R, Gao X, Zhou J Y, Xu H, Li Z Z, Zhang S Q, Xie Z Q, Zhang J, Liu Z F. Chemical Vapor Deposition Growth of Linked Carbon Monolayers with Acetylenic Scaffoldings on Silver Foil[J]. Adv. Mater., 2017,29(18)1604665. doi: 10.1002/adma.201604665

    40. [40]

      Qian X M, Liu H B, Huang C S, Chen S H, Zhang L, Li Y J, Wang J Z, Li Y L. Self-Catalyzed Growth of Large-Area Nanofilms of Two-Dimensional Carbon[J]. Sci. Rep., 2015,5(1)7756. doi: 10.1038/srep07756

    41. [41]

      Zhao F H, Li X D, He J J, Wang K, Huang C S. Preparation of Hierarchical Graphdiyne Hollow Nanospheres as Anode for Lithium-Ion Batteries[J]. Chem. Eng. J, 2021,413127486. doi: 10.1016/j.cej.2020.127486

    42. [42]

      Matsuoka R, Sakamoto R, Hoshiko K, Sasaki S, Masunaga H, Nagashio K, Nishihara H. Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface[J]. J. Am. Chem. Soc., 2017,139(8):3145-3152. doi: 10.1021/jacs.6b12776

    43. [43]

      Gao X, Zhu Y H, Yi D, Zhou J Y, Zhang S S, Yin C, Ding F, Zhang S Q, Yi X H, Wang J Z, Tong L M, Han Y, Liu Z F, Zhang J. Ultrathin Graphdiyne Film on Graphene through Solution-Phase Van Der Waals Epitaxy[J]. Sci. Adv., 2018,4(7)eaat6378. doi: 10.1126/sciadv.aat6378

    44. [44]

      Zhou J Y, Gao X, Liu R, Xie Z Q, Yang J, Zhang S Q, Zhang G M, Liu H B, Li Y L, Zhang J, Liu Z F. Synthesis of Graphdiyne Nanowalls Using Acetylenic Coupling Reaction[J]. J. Am. Chem. Soc., 2015,137(24):7596-7599. doi: 10.1021/jacs.5b04057

    45. [45]

      Zhou J Y, Xie Z Q, Liu R, Gao X, Li J Q, Xiong Y, Tong L M, Zhang J, Liu Z F. Synthesis of Ultrathin Graphdiyne Film Using a Surface Template[J]. ACS Appl. Mater. Interfaces, 2019,11(3):2632-2637. doi: 10.1021/acsami.8b02612

    46. [46]

      Li G X, Li Y L, Qian X M, Liu H B, Lin H W, Chen N, Li Y J. Construction of Tubular Molecule Aggregations of Graphdiyne for Highly Efficient Field Emission[J]. J. Phys. Chem. C, 2011,115(6):2611-2615. doi: 10.1021/jp107996f

    47. [47]

      Qian X M, Ning Z Y, Li Y L, Liu H B, Ouyang C B, Chen Q, Li Y J. Construction of Graphdiyne Nanowires with High-Conductivity and Mobility[J]. Dalton Trans., 2012,41(3):730-733. doi: 10.1039/C1DT11641J

    48. [48]

      Kong Y, Li J Q, Zeng S, Yin C, Tong L M, Zhang J. Bridging the Gap between Reality and Ideality of Graphdiyne: The Advances of Synthetic Methodology[J]. Chem, 2020,6(8):1933-1951. doi: 10.1016/j.chempr.2020.06.011

    49. [49]

      Song Y W, Li X D, Yang Z, Wang J, Liu C Y, Xie C P, Wang H L, Huang C S. A Facile Liquid/Liquid Interface Method to Synthesize Graphyne Analogs[J]. Chem. Commun., 2019,55(46):6571-6574. doi: 10.1039/C9CC02786F

    50. [50]

      Yang Z, Zhang C F, Hou Z F, Wang X, He J J, Li X D, Song Y W, Wang N, Wang K, Wang H L, Huang C S. Porous Hydrogen Substituted Graphyne for High Capacity and Ultra-stable Sodium Ion Storage[J]. J. Mater. Chem. A, 2019,7(18):11186-11194. doi: 10.1039/C9TA02100K

    51. [51]

      Miljanic O S, Vollhardt K P C, Whitener G D. An Alkyne Metathesis-Based Route to Ortho-dehydrobenzannulenes[J]. Synlett, 2003(1):29-34.

    52. [52]

      Wu B, Li M R, Xiao S N, Qu Y K, Qiu X Y, Liu T F, Tian F H, Li H X, Xiao S X. A Graphyne-like Porous Carbon-Rich Network Synthesized via Alkyne Metathesis[J]. Nanoscale, 2017,9(33):11939-11943. doi: 10.1039/C7NR02247F

    53. [53]

      Li J Q, Li S, Liu Q, Yin C, Tong L M, Chen C G, Zhang J. Synthesis of Hydrogen-Substituted Graphyne Film for Lithium-Sulfur Battery Applications[J]. Small, 2019,15(13)1805344. doi: 10.1002/smll.201805344

    54. [54]

      Sun Q, Yu X, Bao M L, Liu M X, Pan J L, Zha Z Q, Cai L L, Ma H H, Yuan C X, Qiu X H, Xu W. Direct Formation of C—C Triple-Bonded Structural Motifs by On-Surface Dehalogenative Homocouplings of Tribromomethyl-Substituted Arenes[J]. Angew. Chem. Int. Ed., 2018,57(15):4035-4038. doi: 10.1002/anie.201801056

    55. [55]

      Liang J Z, Wu J S, Zhang Y J, Zhao X L, Yuan C X. Synthesis of Hydrogen-Substituted Graphyne Film via Dehalogenative Homocoupling Reaction[J]. Tetrahedron, 2021,89132171. doi: 10.1016/j.tet.2021.132171

    56. [56]

      LEE J, LI Y, TANG J N, CUI X L. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties[J]. Acta Phys.-Chim. Sin., 2018,34(9):1080-1087.  

    57. [57]

      Li Y J, Liu Q N, Li W F, Lu Y Z, Meng H, Li C X. Efficient Destruction of Hexachlorobenzene by Calcium Carbide through Mechanochemical Reaction in a Planetary Ball Mill[J]. Chemosphere, 2017,166:275-280. doi: 10.1016/j.chemosphere.2016.09.135

    58. [58]

      Li Y J, Liu Q N, Li W F, Meng H, Lu Y Z, Li C X. Synthesis and Supercapacitor Application of Alkynyl Carbon Materials Derived from CaC2 and Polyhalogenated Hydrocarbons by Interfacial Mechanochemical Reactions[J]. ACS Appl. Mater. Interfaces, 2017,9(4):3895-3901. doi: 10.1021/acsami.6b13610

    59. [59]

      Do J L, Friscic T. Mechanochemistry: A Force of Synthesis[J]. ACS Central Science, 2017,3(1):13-19. doi: 10.1021/acscentsci.6b00277

    60. [60]

      Li Q D, Yang C F, Wu L L, Wang H, Cui X L. Converting Benzene into γ-Graphyne and Its Enhanced Electrochemical Oxygen Evolution Performance[J]. J. Mater. Chem. A, 2019,7(11):5981-5990. doi: 10.1039/C8TA10317H

    61. [61]

      Lu Y X, Chen Y, Li Q D, Hao Z X, Wang L R, Qiu D, He C L, Wang M Y, Cui X L. Regulating Symmetry of Organic Precursors for Mechanochemical Synthesizing Rich Pyridonic-/Pyridinic-Nitrogen Doped Graphyne[J]. Carbon, 2022,194:274-281. doi: 10.1016/j.carbon.2022.03.069

    62. [62]

      Hu Y M, Wu C Y, Pan Q Y, Jin Y H, Lyu R, Martinez V, Huang S F, Wu J Y, Wayment L J, Clark N A, Raschke M B, Zhao Y J, Zhang W. Synthesis of γ-Graphyne Using Dynamic Covalent Chemistry[J]. Nat. Synth., 2022,1:449-454. doi: 10.1038/s44160-022-00068-7

    63. [63]

      Barua M, Saraswat A, Rao C N R. A Novel Method for Synthesis of γ-graphyne and Their Charge Transfer Properties[J]. Carbon, 2022,200:247-252. doi: 10.1016/j.carbon.2022.08.061

    64. [64]

      Feng K, Li M, Liu W W, Kashkooli A G, Xiao X C, Cai M, Chen Z W. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications[J]. Small, 2018,14(8)1702737. doi: 10.1002/smll.201702737

    65. [65]

      Ren W F, Zhou Y, Li J T, Huang L, Sun S G. Si Anode for Next-Generation Lithium-Ion Battery[J]. Curr. Opin. Electrochem., 2019,18:46-54. doi: 10.1016/j.coelec.2019.09.006

    66. [66]

      Zhu G J, Luo W, Wang L J, Jiang W, Yang J P. Silicon: Toward Ecofriendly Reduction Techniques for Lithium-Ion Battery Applications[J]. J. Mater. Chem. A, 2019,7(43):24715-24737. doi: 10.1039/C9TA08554H

    67. [67]

      Li P, Kim H, Myung S T, Sun Y K. Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries[J]. Energy Storage Mater., 2021,35:550-576. doi: 10.1016/j.ensm.2020.11.028

    68. [68]

      Zhao X Y, Lehto V P. Challenges and Prospects of Nanosized Silicon Anodes in Lithium-Ion Batteries[J]. Nanotechnology, 2020,32(4)042002.

    69. [69]

      Ying H J, Han W Q. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries[J]. Adv. Sci., 2017,4(11)1700298. doi: 10.1002/advs.201700298

    70. [70]

      Mou H Y, Xiao W, Miao C, Li R, Yu L M. Tin and Tin Compound Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review[J]. Front. Chem., 2020,8141. doi: 10.3389/fchem.2020.00141

    71. [71]

      Huang B, Pan Z F, Su X Y, An L. Tin-Based Materials as Versatile Anodes for Alkali (Earth)-Ion Batteries[J]. J. Power Sources, 2018,395:41-59. doi: 10.1016/j.jpowsour.2018.05.063

    72. [72]

      Li Y J, Li Y Y, Lin P, Gu J, He X J, Yu M X, Wang X T, Liu C, Li C X. Architecture and Electrochemical Performance of Alkynyl-Linked Naphthyl Carbon Skeleton: Naphyne[J]. ACS Appl. Mater. Interfaces, 2020,12(29):33076-33082. doi: 10.1021/acsami.0c05741

    73. [73]

      Shang H, Zuo Z C, Li L, Wang F, Liu H B, Li Y J, Li Y L. Ultrathin Graphdiyne Nanosheets Grown In Situ on Copper Nanowires and Their Performance as Lithium-Ion Battery Anodes[J]. Angew. Chem. Int. Ed., 2018,57(3):774-778. doi: 10.1002/anie.201711366

    74. [74]

      Tian W J, Zhang H Y, Duan X G, Sun H Q, Shao G S, Wang S B. Porous Carbons: Structure-Oriented Design and Versatile Applications[J]. Adv. Funct. Mater., 2020,30(17)1909265. doi: 10.1002/adfm.201909265

    75. [75]

      Balogun M S, Luo Y, Qiu W T, Liu P, Tong Y X. A Review of Carbon Materials and Their Composites with Alloy Metals for Sodium Ion Battery Anodes[J]. Carbon, 2016,98:162-178. doi: 10.1016/j.carbon.2015.09.091

    76. [76]

      Zhang H Y, Xia Y Y, Bu H X, Wang X P, Zhang M, Luo Y H, Zhao M W. Graphdiyne: A Promising Anode Material for Lithium Ion Batteries with High Capacity and Rate Capability[J]. J. Appl. Phys., 2013,113(4)044309. doi: 10.1063/1.4789635

    77. [77]

      Huang C S, Zhang S L, Liu H B, Li Y J, Cui G T, Li Y L. Graphdiyne for High Capacity and Long-Life Lithium Storage[J]. Nano Energy, 2015,11:481-489. doi: 10.1016/j.nanoen.2014.11.036

    78. [78]

      Zhang S L, Liu H B, Huang C S, Cui G L, Li Y L. Bulk Graphdiyne Powder Applied for Highly Efficient Lithium Storage[J]. Chem. Commun., 2015,51(10):1834-1837. doi: 10.1039/C4CC08706B

    79. [79]

      Du H P, Yang H, Huang C S, He J J, Liu H B, Li Y L. Graphdiyne Applied for Lithium-Ion Capacitors Displaying High Power and Energy Densities[J]. Nano Energy, 2016,22:615-622. doi: 10.1016/j.nanoen.2016.02.052

    80. [80]

      Yang C F, Li Y, Chen Y, Li Q D, Wu L L, Cui X L. Mechanochemical Synthesis of γ-Graphyne with Enhanced Lithium Storage Performance[J]. Small, 2019,15(8)1804710. doi: 10.1002/smll.201804710

    81. [81]

      Wang D, Wang Z Y, Li Y, Dong K Z, Shao J H, Luo S H, Liu Y G, Qi X W. In Situ Double-Template Fabrication of Boron-Doped 3D Hierarchical Porous Carbon Network as Anode Materials for Li-and Na-Ion Batteries[J]. Appl. Surf. Sci., 2019,464:422-428. doi: 10.1016/j.apsusc.2018.09.035

    82. [82]

      Rodriguez-Garcia J, Camean I, Ramos A, Rodriguez E, Garcia A B. Graphitic Carbon Foams as Anodes for Sodium-Ion Batteries in Glyme-Based Electrolytes[J]. Electrochim. Acta, 2018,270:236-244. doi: 10.1016/j.electacta.2018.03.084

    83. [83]

      Zhang F, Alhajji E, Lei Y J, Kurra N, Alshareef H N. Highly Doped 3D Graphene Na-Ion Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient[J]. Adv. Energy Mater., 2018,8(23)1800353. doi: 10.1002/aenm.201800353

    84. [84]

      Ou J K, Yang L, Zhang Z. Chrysanthemum Derived Hierarchically Porous Nitrogen-Doped Carbon as High Performance Anode Material for Lithium/Sodium Ion Batteries[J]. Powder Technol., 2019,,344:89-95. doi: 10.1016/j.powtec.2018.11.100

    85. [85]

      Zhang W L, Sun M L, Yin J, Wang W X, Huang G, Qiu X Q, S chwingenschlogl U, Alshareef H N. Rational Design of Carbon Anodes by Catalytic Pyrolysis of Graphitic Carbon Nitride for Efficient Storage of Na and K Mobile Ions[J]. Nano Energy, 2021,87106184. doi: 10.1016/j.nanoen.2021.106184

    86. [86]

      Liu C K, Hu J T, Yang L Y, Zhao W G, Li H J, Pan F. Low-Surface-Area Nitrogen Doped Carbon Nanomaterials for Advanced Sodium Ion Batteries[J]. Chem. Commun., 2018,54(17):2142-2145. doi: 10.1039/C7CC09911H

    87. [87]

      Fu L J, Tang K, Song K P, van Aken P A, Yu Y, Maier J. Nitrogen Doped Porous Carbon Fibres as Anode Materials for Sodium Ion Batteries with Excellent Rate Performance[J]. Nanoscale, 2014,6(3):1384-1389. doi: 10.1039/C3NR05374A

    88. [88]

      Yang C F, Qiao C, Chen Y, Zhao X Q, Wu L L, Li Y, Jia Y, Wang S Y, Cui X L. Nitrogen Doped γ-Graphyne: A Novel Anode for High-Capacity Rechargeable Alkali-Ion Batteries[J]. Small, 2020,16(10)1907365. doi: 10.1002/smll.201907365

    89. [89]

      Xu F, Zhai Y X, Zhang E, Liu Q H, Jiang G S, Xu X S, Qiu Y Q, Liu X M, Wang H Q, Kaskel S. Ultrastable Surface-Dominated Pseudocapacitive Potassium Storage Enabled by Edge-Enriched N-Doped Porous Carbon Nanosheets[J]. Angew. Chem. Int. Ed., 2020,59(44):19460-19467. doi: 10.1002/anie.202005118

    90. [90]

      Liu M Q, Chang L M, Wang J, Li J H, Jiang J M, Pang G, Wang H R, Nie P, Zhao C M, Xu T H, Wang L M. Hierarchical N-Doped Carbon Nanosheets Submicrospheres Enable Superior Electrochemical Properties for Potassium Ion Capacitors[J]. J. Power Sources, 2020,469228415. doi: 10.1016/j.jpowsour.2020.228415

    91. [91]

      Tian S, Guan D C, Lu J, Zhang Y, Liu T Z, Zhao X Y, Yang C H, Nan J M. Synthesis of the Electrochemically Stable Sulfur-Doped Bamboo Charcoal as the Anode Material of Potassium-Ion Batteries[J]. J. Power Sources, 2020,448227572. doi: 10.1016/j.jpowsour.2019.227572

    92. [92]

      Liu Y, Lu Y X, Xu Y S, Meng Q S, Gao J C, Sun Y G, Hu Y S, Chang B B, Liu C T, Cao A M. Pitch-Derived Soft Carbon as Stable Anode Material for Potassium Ion Batteries[J]. Adv. Mater., 2020,32(17)2000505. doi: 10.1002/adma.202000505

    93. [93]

      Xu Y, Zhang C L, Zhou M, Fu Q, Zhao C X, Wu M H, Lei Y. Highly Nitrogen Doped Carbon Nanofibers with Superior Rate Capability and Cyclability for Potassium Ion Batteries[J]. Nat. Commun., 2018,9(1)1720. doi: 10.1038/s41467-018-04190-z

    94. [94]

      Wang M Y, Zhu Y Y, Zhang Y, Duan J Y, Wang K K, Wang R, Sun G Y, Wang C Y. Isotropic High Softening Point Petroleum Pitch-Based Carbon as Anode for High-Performance Potassium-Ion Batteries[J]. J. Power Sources, 2021,481228902. doi: 10.1016/j.jpowsour.2020.228902

    95. [95]

      Share K, Cohn A P, Carter R, Rogers B, Pint C L. Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes[J]. ACS Nano, 2016,10(10):9738-9744. doi: 10.1021/acsnano.6b05998

    96. [96]

      Han J W, Zhang C, Kong D B, He X Z, Xiao J, Chen F Q, Tao Y, Wan Y, Yang Q H. Flowable Sulfur Template Induced Fully Interconnected Pore Structures in Graphene Artefacts towards High Volumetric Potassium Storage[J]. Nano Energy, 2020,72104729. doi: 10.1016/j.nanoen.2020.104729

    97. [97]

      Yang W X, Zhou J H, Wang S, Wang Z C, Lv F, Zhang W S, Zhang W Y, Sun Q, Guo S J. A Three-Dimensional Carbon Framework Constructed by N/S Co-doped Graphene Nanosheets with Expanded Interlayer Spacing Facilitates Potassium Ion Storage[J]. ACS Energy Lett., 2020,5(5):1653-1661. doi: 10.1021/acsenergylett.0c00413

    98. [98]

      Wu Y J, Sun Y J, Zheng J F, Rong J H, Li H Y, Niu L. MXenes: Advanced Materials in Potassium Ion Batteries[J]. Chem. Eng. J., 2021,404126565. doi: 10.1016/j.cej.2020.126565

    99. [99]

      Cao J M, Sun Z Q, Li J Z, Zhu Y K, Yuan Z Y, Zhang Y M, Li D D, Wang L L, Han W. Microbe-Assisted Assembly of Ti3C 2Tx MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage[J]. ACS Nano, 2021,15(2):3423-3433. doi: 10.1021/acsnano.0c10491

    100. [100]

      Zhao R Z, Di H X, Wang C X, Hui X B, Zhao D Y, Wang R T, Zhang L Y, Yin L W. Encapsulating Ultrafine Sb Nanoparticles in Na+ Pre-Intercalated 3D Porous Ti3C2Tx MXene Nanostructures for Enhanced Potassium Storage Performance[J]. ACS Nano, 2020,14(10):13938-13951. doi: 10.1021/acsnano.0c06360

    101. [101]

      Ju Z C, Zhang S, Xing Z, Zhuang Q C, Qiang Y H, Qian Y T. Direct Synthesis of Few-Layer F-Doped Graphene Foam and Its Lithium/ Potassium Storage Properties[J]. ACS Appl. Mater. Interfaces, 2016,8(32):20682-20690. doi: 10.1021/acsami.6b04763

    102. [102]

      Chen Y, Li Q D, Wang W J, Lu Y X, He C L, Qiu D, Cui X L. Mechanochemical Constructing Ordered Rhombic Channels in Graphyne Analogues for Rapid Potassium-Ion Storage. 2[J]. D Mater., 2021,8(4)044012.

    103. [103]

      Li X B, Kang B B, Dong F, Zhang Z Q, Luo X D, Han L, Huang J T, Feng Z J, Chen Z, Xu J L, Peng B L, Wang Z L. Enhanced Photocatalytic Degradation and H2/H2O2 Production Performance of S-pCN/WO2.72 S-Scheme Heterojunction with Appropriate Surface Oxygen Vacancies[J]. Nano Energy, 2021,81105671. doi: 10.1016/j.nanoen.2020.105671

    104. [104]

      Liu J H, Wei X N, Sun W Q, Guan X X, Zheng X C, Li J. Fabrication of S-Scheme CdS-g-C3N4-Graphene Aerogel Heterojunction for Enhanced Visible Light Driven Photocatalysis[J]. Environ. Res., 2021,197111136. doi: 10.1016/j.envres.2021.111136

    105. [105]

      Jiang D L, Ma W X, Xiao P, Shao L Q, Li D, Chen M. Enhanced Photocatalytic Activity of Graphitic Carbon Nitride/Carbon Nanotube/Bi 2 WO6 Ternary Z-Scheme Heterojunction with Carbon Nanotube as Efficient Electron Mediator[J]. J. Colloid Interface Sci, 2018,512:693-700. doi: 10.1016/j.jcis.2017.10.074

    106. [106]

      Yu H T, Quan X, Chen S, Zhao H M, Zhang Y B. TiO2-Carbon Nanotube Heterojunction Arrays with a Controllable Thickness of TiO2 Layer and Their First Application in Photocatalysis[J]. J. Photochem. Photobiol. A, 2008,200(2/3):301-306.

    107. [107]

      Xu Q L, Zhu B C, Cheng B, Yu J G, Zhou M H, Ho W K. Photocatalytic H2 Evolution on Graphdiyne/g-C3N 4 Hybrid Nanocomposites[J]. Appl. Catal. B-Environ., 2019,255117770. doi: 10.1016/j.apcatb.2019.117770

    108. [108]

      Wu L L, Li Q D, Yang C F, Ma X Q, Zhang Z F, Cui X L. Constructing a Novel TiO2/γ-Graphyne Heterojunction for Enhanced Photocatalytic Hydrogen Evolution[J]. J. Mater. Chem. A, 2018,6(42):20947-20955. doi: 10.1039/C8TA07307D

    109. [109]

      Du D F, Zhao S, Zhu Z, Li F J, Chen J. Photo-excited Oxygen Reduction and Oxygen Evolution Reactions Enable a High-Performance Zn-Air Battery[J]. Angew. Chem. Int. Ed., 2020,59(41):18140-18144. doi: 10.1002/anie.202005929

    110. [110]

      Zhang B Q, Wang S Y, Fan W J, Ma W G, Liang Z X, Shi J Y, Liao S J, Li C. Photoassisted Oxygen Reduction Reaction in H2O2 Fuel Cells[J]. Angew. Chem. Int. Ed., 2016,55(47):14748-14751. doi: 10.1002/anie.201607118

    111. [111]

      Qiu Y C, Liu W, Chen W, Chen W, Zhou G M, Hsu P C, Zhang R F, Liang Z, Fan S S, Zhang Y G, Cui Y. Efficient Solar-Driven Water Splitting by Nanocone BiVO4-Perovskite Tandem Cells[J]. Sci. Adv., 2016,2(6)e1501764. doi: 10.1126/sciadv.1501764

    112. [112]

      Sokol K P, Robinson W E, Warnan J, Kornienko N, Nowaczyk M M, Ruff A, Zhang J Z, Reisner E. Bias-Free Photoelectrochemical Water Splitting with Photosystem Ⅱ on a Dye-Sensitized Photoanode Wired to Hydrogenase[J]. Nat. Energy, 2018,3(11):944-951. doi: 10.1038/s41560-018-0232-y

    113. [113]

      Zhang H, Wang H Z, Xuan J. Rational Design of Photoelectrochemical Cells towards Bias-Free Water Splitting: Thermodynamic and Kinetic Insights[J]. J. Power Sources, 2020,462228113. doi: 10.1016/j.jpowsour.2020.228113

    114. [114]

      Kim H, Bae S, Jeon D, Ryu J. Fully Solution-Processable Cu2O-BiVO4 Photoelectrochemical Cells for Bias-Free Solar Water Splitting[J]. Green Chem., 2018,20(16):3732-3742. doi: 10.1039/C8GC00681D

    115. [115]

      Jakešová M, Apaydin D H, Sytnyk M, Oppelt K, Heiss W, Sariciftci N S, Głowacki E D. Hydrogen-Bonded Organic Semiconductors as Stable Photoelectrocatalysts for Efficient Hydrogen Peroxide Photosynthesis[J]. Adv. Funct. Mater., 2016,26(29):5248-5254. doi: 10.1002/adfm.201601946

    116. [116]

      Fan W J, Zhang B Q, Wang X Y, Ma W G, Li D, Wang Z L, Dupuis M, Shi J Y, Liao S J, Li C. Efficient Hydrogen Peroxide Synthesis by Metal-Free Polyterthiophene via Photoelectrocatalytic Dioxygen Reduction[J]. Energy Environ. Sci., 2020,13(1):238-245. doi: 10.1039/C9EE02247C

    117. [117]

      Li Q D, Chen Y, Du F, Cui X L, Dai L M. Bias-Free Synthesis of Hydrogen Peroxide from Photo-Driven Oxygen Reduction Reaction Using N-Doped γ-Graphyne Catalyst[J]. Appl. Catal. B-Environ., 2022,304120959. doi: 10.1016/j.apcatb.2021.120959

    118. [118]

      Lin Y, Liu H Y, Yang C P, Wu X, Du C, Jiang L M, Zhong Y Y. γ-Graphyne as Photogenerated Electrons Transfer Layer Enhances Photocatalytic Performance of Silver Phosphate[J]. Appl. Catal. B-Environ., 2020,264118479. doi: 10.1016/j.apcatb.2019.118479

    119. [119]

      Yang J, Bi Z S, Zhang S Y, Zeng L R, Zhang Y N, Wang Y N, Yan J F, Zhao W, Dai Y, Yun J N. Synthesis of γ-Graphyne by Modified Mechanochemistry with Enhanced Adsorption of Organic Dyes[J]. Diam. Relat. Mat., 2022,129109336. doi: 10.1016/j.diamond.2022.109336

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(5)
  • Abstract views(444)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return