Citation: Xin-Yue XU, Hua-Li CUI, Wen LIU, Xiao-Li CHEN, Hua YANG, Lin LIU, Ji-Jiang WANG. Synthesis and Fluorescence Sensing for Fe3+ and p-Nitrophenol of a Copper Coordination Polymer[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2539-2549. doi: 10.11862/CJIC.2022.253 shu

Synthesis and Fluorescence Sensing for Fe3+ and p-Nitrophenol of a Copper Coordination Polymer

  • Corresponding author: Hua-Li CUI, cuihuali07@163.com
  • Received Date: 26 July 2022
    Revised Date: 9 October 2022

Figures(7)

  • Under hydrothermal conditions, a coordination polymer {[Cu2(Hdepa) (2, 2'-bpy)2(H2O)2]·2H2O}n was designed and synthesized based on ligands H5depa and 2, 2'-bpy (H5depa=2, 2', 3, 4', 5-diphenyl ether pentacarboxylic acid, 2, 2'-bpy=2, 2'-bipyridine). Its structure was characterized by elemental analysis, infrared spectroscopy, singlecrystal X-ray diffraction, and thermal stability analysis. The two central Cu2+ ions in coordination polymer 1 adopt a five-coordination with triangular bipyramid geometry. The incompletely deprotonated Hdepa4- ligand adopts a μ4-η1-η1-η1-η1 coordination mode. The 2D layers are connected by weak hydrogen bonds to form a 3D supramolecular structure. As a highly sensitive, selective, and multi-response fluorescent sensor, 1 could rapidly detect Fe3+ and p-nitrophenol (4-NP). In addition, the fluorescence quenching mechanism was also studied.
  • 加载中
    1. [1]

      Wang Z J, Qin L, Chen J X, Zheng H G. H-Bonding Interactions Induced Two Isostructural Cd Metal-Organic Frameworks Showing Different Selective Detection of Nitroaromatic Explosives[J]. Inorg. Chem., 2016,55(21):10999-11005. doi: 10.1021/acs.inorgchem.6b01521

    2. [2]

      Hwa K Y, Ganguly A, Santhan A, Sharma T S K. Synthesis of Water-Soluble Cadmium Selenide/Zinc Sulfide Quantum Dots on Functionalized Multiwalled Carbon Nanotubes for Efficient Covalent Synergism in Determining Environmental Hazardous Phenolic Compounds[J]. ACS Sustain. Chem. Eng., 2022,10(3):1298-1315. doi: 10.1021/acssuschemeng.1c07690

    3. [3]

      Thangavelu D, Chen Y, Annamalai P, Ramadoss M, Narayanan V. Rationally Designed Ag@polymer@2-D LDH Nanoflakes for Bifunctional Efficient Electrochemical Sensing of 4-Nitrophenol and Water Oxidation Reaction[J]. ACS Appl. Mater. Interfaces, 2022,14(5):6518-6527. doi: 10.1021/acsami.1c19077

    4. [4]

      Seal N, Palakkal A S, Singh M, Goswami R, Pillai R S, Neogi S. Chemically Robust and Bifunctional Co(Ⅱ)-Framework for Trace Detection of Assorted Organo-toxins and Highly Cooperative Deacetalization-Knoevenagel Condensation with Pore-Fitting-Induced Size-Selectivity[J]. ACS Appl. Mater. Interfaces, 2021,13(24):28378-28389. doi: 10.1021/acsami.1c07273

    5. [5]

      Hu L L, Peng F, Xia D H, He H J W, He C, Fang Z K, Yang J L, Tian S H, Sharma V K, Shu D. Carbohydrates-Derived Nitrogen-Doped Hierarchical Porous Carbon for Ultrasensitive Detection of 4-Nitrophenol[J]. ACS Sustain. Chem. Eng., 2018,6(12):17391-17401. doi: 10.1021/acssuschemeng.8b05169

    6. [6]

      Farinas P S, Doimo A L, Silva M A R, Teixeira I F. Synthesis and Application of Ag Nanoparticles for an Undergraduate Laboratory: Ultrasensitive Method to Detect Copper(Ⅱ) Ions[J]. J. Chem. Educ., 2020,97(10):3771-3777. doi: 10.1021/acs.jchemed.0c00310

    7. [7]

      Gu Y N, Lu J F, Liu H, Zhao B, Zhou X H, Zhao Y Q, Sun Q Z, Zhang B G. Two Eu3+ Based Complexes Containing Uncoordinated Lewis Basic Pyridyl Sites and Chemical Sensing of 4-Nitrophenol and Fe3+ Ions[J]. Cryst. Growth Des., 2022,22(8):4874-4884. doi: 10.1021/acs.cgd.2c00347

    8. [8]

      Rajendran S, Ramanaiah D V, Kundu S, Bhunia S K. Yellow Fluorescent Carbon Dots for Selective Recognition of As3+ and Fe3+ Ions[J]. ACS Appl. Nano Mater., 2021,4(10):10931-10942. doi: 10.1021/acsanm.1c02391

    9. [9]

      Bai C, Yan L, Hu H M, Zou F, Zhang T H, Xue G L. Electrospinning Fabrication of Europium-Chain@Polymer Nanofiber Films for Visual Detection of the Fe3+ Ion[J]. ACS Appl. Polym. Mater., 2021,3(9):4504-4511. doi: 10.1021/acsapm.1c00539

    10. [10]

      Tang J P, Huang M Y, Liang Z X, Yang Y Y, Wen Y H, Zhu Q L, Wu X T. Water-Stable Two-Dimensional Metal-Organic Framework Nanostructures for Fe3+ Ions Detection[J]. Cryst. Growth Des., 2021,21(9):5275-5282. doi: 10.1021/acs.cgd.1c00606

    11. [11]

      Ferguson T, Bernicky A, Kozin I, Loock H P. HPLC-Detector Based on Hadamard-Transform Fluorescence Excitation-Emission-Matrix Spectroscopy[J]. Anal. Chem., 2021,93(23):8116-8121. doi: 10.1021/acs.analchem.1c01037

    12. [12]

      Mohamed S H, Salim A I, Issa Y M, Ali A E. Detection and Identification of Adulteration in Vinegar Samples Based on Reversed-Phase High-Performance Liquid Chromatographic (RP-HPLC) Strategies[J]. ACS Food Sci. Technol., 2022,2(1):21-30. doi: 10.1021/acsfoodscitech.1c00169

    13. [13]

      Wang Y, Gao W J, Li Y Y, Xiao Y, Song W, Yao T, Cheng M H, Wang W J, Hou R Y. Establishment of a HPLC-MS/MS Detection Method for Glyphosate, Glufosinate-Ammonium, and Aminomethyl Phosphoric Acid in Tea and Its Use for Risk Exposure Assessment[J]. J. Agric. Food Chem., 2021,69(28):7969-7978. doi: 10.1021/acs.jafc.1c01757

    14. [14]

      Zhang G L, Zhang M M, Shi Q, Jiang Z Y, Tong L L, Chen Z Z, Tang B. In Situ Construction of COF-Based Paper Serving as a Plasmonic Substrate for Enhanced PSI-MS Detection of Polycyclic Aromatic Hydrocarbons[J]. ACS Appl. Mater. Interfaces, 2021,13(36):43438-43448. doi: 10.1021/acsami.1c13860

    15. [15]

      Wang X N, Li B. Monolithic Gold Nanoparticles/Thiol-β-cyclodextrin-Functionalized TiO2 Nanowires for Enhanced SALDI MS Detection and Imaging of Natural Products[J]. Anal. Chem., 2022,94(2):952-959. doi: 10.1021/acs.analchem.1c03764

    16. [16]

      Stejskal K, Beeck J O, Dürnberger G, Jacobs P, Mechtler K. Ultrasensitive NanoLC-MS of Subnanogram Protein Samples Using Second Generation Micropillar Array LC Technology with Orbitrap Exploris 480 and FAIMS PRO[J]. Anal. Chem., 2021,93(25):8704-8710. doi: 10.1021/acs.analchem.1c00990

    17. [17]

      Wu J Y, Huang S Y, Tan L, Li Y L, Wu X T, Liang Y. Detection of Dengue Fever Nonstructural Protein 1 Antigen by Proteolytic Peptide Imprinting Technology and UHPLC-MS/MS[J]. Anal. Chem., 2021,93(42):14106-14112. doi: 10.1021/acs.analchem.1c01983

    18. [18]

      Reyes R Y C, Rouf T B, Torres O E, González E E. Fluorescent Molecular Sensor for the Detection of Cadmium in Basil Roots[J]. ACS Agric. Sci. Technol., 2022,2(1):144-152. doi: 10.1021/acsagscitech.1c00250

    19. [19]

      Liu S Y, Tao D G, Liao Y Y, Yang Y L, Sun S Z, Zhao Y L, Yang P, Tang Y J, Chen B, Liu Y G, Xie S S, Tang Z L. Highly Sensitive CRISPR/Cas12a-Based Fluorescence Detection of Porcine Reproductive and Respiratory Syndrome Virus[J]. ACS Synth. Biol., 2021,10(10):2499-2507. doi: 10.1021/acssynbio.1c00103

    20. [20]

      Wu F N, Zhu J, Weng G J, Li J J, Zhao J W. Tyrosine-Decorated Gold Nanoclusters Chelated Cerium(Ⅲ) for Fluorescence Detection of Dopamine[J]. ACS Appl. Nano Mater., 2021,4(12):13501-13509. doi: 10.1021/acsanm.1c02982

    21. [21]

      Lei M, Jia Y Y, Zhang W, Xie J, Xu Z J, Wang Y L, Du W, Liu W. Ultrasensitive and Selective Detection of Uranium by a Luminescent Terbium-Organic Framework[J]. ACS Appl. Mater. Interfaces, 2021,13(43):51086-51094. doi: 10.1021/acsami.1c16742

    22. [22]

      Li L, Ding Y L, Zhang C, Xian H Y, Chen S R, Dai G L, Wang X M, Ye C Q. Ratiometric Fluorescence Detection of Mg2+ Based on Regulating Crown-Ether Modified Annihilators for Triplet-Triplet Annihilation Upconversion[J]. J. Phys. Chem. B, 2022,126(17):3276-3282. doi: 10.1021/acs.jpcb.2c00928

    23. [23]

      Chen X L, Shang L, Liu L, Yang H, Cui H L, Wang J J. A Highly Sensitive and Multi-responsive Tb-MOF Fluorescent Sensor for the Detection of Pb2+, Cr2O72-, B4O72-, Aniline, Nitrobenzene, and Cefixime[J]. Dyes Pigment., 2021,196109809. doi: 10.1016/j.dyepig.2021.109809

    24. [24]

      Liu L, Chen X L, Shang L, Cai M, Cui H L, Yang H, Wang J J. Eu3+-Postdoped MOFs are Used for Fluorescence Sensing of TNP, TC and Pesticides and for Anti-counterfeiting Ink Application[J]. Dyes Pigment., 2022,202110253. doi: 10.1016/j.dyepig.2022.110253

    25. [25]

      Hang X X, Xue Y D, Cheng Y, Du M, Du L T, Pang H. From Co-MOF to CoNi-MOF to Ni-MOF: A Facile Synthesis of 1D Micro-/Nanomaterials[J]. Inorg. Chem., 2021,60(17):13168-13176. doi: 10.1021/acs.inorgchem.1c01561

    26. [26]

      Agarwal R A, Gupta A K, De D. Flexible Zn-MOF Exhibiting Selective CO2 Adsorption and Efficient Lewis Acidic Catalytic Activity[J]. Cryst. Growth Des., 2019,19(3):2010-2018. doi: 10.1021/acs.cgd.8b01462

    27. [27]

      Zhu K, Fan R, Wu J B, Wang B, Lu H, Zheng X, Sun T, Gai S, Zhou X, Yang Y. MOF-on-MOF Membrane with Cascading Functionality for Capturing Dichromate Ions and p-Arsanilic Acid Turn-On Sensing[J]. ACS Appl. Mater. Interfaces, 2020,12(52):58239-58251. doi: 10.1021/acsami.0c17875

    28. [28]

      Shi X L, Zu Y C, Jiang S S, Sun F X. An Anionic Indium-Organic Framework with Spirobifluorene-Based Ligand for Selective Adsorption of Organic Dyes[J]. Inorg. Chem., 2021,60(3):1571-1578. doi: 10.1021/acs.inorgchem.0c02962

    29. [29]

      Yang S L, Li G, Guo M Y, Liu W S, Bu R, Gao E Q. Positive Cooperative Protonation of a Metal-Organic Framework: pH-Responsive Fluorescence and Proton Conduction[J]. J. Am. Chem. Soc., 2021,143(23):8838-8848. doi: 10.1021/jacs.1c03432

    30. [30]

      Wang B, Yang Q, Guo C, Sun Y X, Xie L H, Li J R. Stable Zr(Ⅳ)-Based Metal-Organic Frameworks with Predesigned Functionalized Ligands for Highly Selective Detection of Fe(Ⅲ) Ions in Water[J]. ACS Appl. Mater. Interfaces, 2017,9(11):10286-10295. doi: 10.1021/acsami.7b00918

    31. [31]

      Wang Y, Ma J X, Zhang Y, Xu N, Wang X L. A Series of Cobalt-Based Coordination Polymer Crystalline Materials as Highly Sensitive Electrochemical Sensors for Detecting Trace Cr(Ⅵ), Fe(Ⅲ) Ions, and Ascorbic Acid[J]. Cryst. Growth Des., 2021,21(8):4390-4397. doi: 10.1021/acs.cgd.1c00311

    32. [32]

      Liu W B, Li N N, Zhang X, Zhao Y, Zong Z A, Wu R X, Tong J P, Bi C F, Shao F, Fan Y H. Four Zn(Ⅱ)-MOFs as Highly Sensitive Chemical Sensor for the Rapid Detection of Tetracycline, o-Nitro Phenol, Cr2O72-/PO43-, Fe3+/Al3+ in Water Environment[J]. Cryst. Growth Des., 2021,21(10):5558-5572. doi: 10.1021/acs.cgd.1c00359

    33. [33]

      Jiang Q J, Lin J Y, Hu Z J, Hsiao V K S, Chung M Y, Wu J Y. Luminescent Zinc(Ⅱ) Coordination Polymers of Bis(pyridin-4-yl)benzothiadiazole and Aromatic Polycarboxylates for Highly Selective Detection of Fe(Ⅲ) and High-Valent Oxyanions[J]. Cryst. Growth Des., 2021,21(4):2056-2067. doi: 10.1021/acs.cgd.0c01492

    34. [34]

      Xu N, Zhang Q H, Hou B S, Cheng Q, Zhang G A. A Novel Magnesium Metal-Organic Framework as a Multiresponsive Luminescent Sensor for Fe(Ⅲ) Ions, Pesticides, and Antibiotics with High Selectivity and Sensitivity[J]. Inorg. Chem., 2018,57(21):13330-13340. doi: 10.1021/acs.inorgchem.8b01903

    35. [35]

      Fan M Y, Sun B, Li X, Pan Q Q, Sun J, Ma P F, Su Z M. Highly Fluorescent Cadmium Based Metal-Organic Frameworks for Rapid Detection of Antibiotic Residues, Fe3+ and Cr2O72- Ions[J]. Inorg. Chem., 2021,60(12):9148-9156. doi: 10.1021/acs.inorgchem.1c01165

    36. [36]

      D'souza L R, Harmalkar N N, Harmalkar S S, Tayade S B, Dhuri S N. Succinate Coordination Polymers: Influence of Solvent on Architectures and Applications in Gas Adsorption and NAC Detection[J]. ACS Omega, 2022,7(7):5698-5712. doi: 10.1021/acsomega.1c05216

    37. [37]

      Rajak R, Saraf M, Kumar P, Natarajan K, Mobin S M. Construction of a Cu-Based Metal-Organic Framework by Employing a Mixed-Ligand Strategy and Its Facile Conversion into Nanofibrous CuO for Electrochemical Energy Storage Applications[J]. Inorg. Chem., 2021,60(22):16986-16995. doi: 10.1021/acs.inorgchem.1c02062

    38. [38]

      Jana S, Saha S, Chandra A, Fallah S E, Das S, Sinha C. A Cu(Ⅱ) Metal Organic Framework with a Tetranuclear Core: Structure, Magnetism, and Supercapacitor Activity[J]. Cryst. Growth Des., 2022,22(2):1172-1181. doi: 10.1021/acs.cgd.1c01109

    39. [39]

      Yan T, Wang P, Xu Z H, Sun W Y. Copper(Ⅱ) Frameworks with Varied Active Site Distribution for Modulating Selectivity of Carbon Dioxide Electroreduction[J]. ACS Appl. Mater. Interfaces, 2022,14(11):13645-13652. doi: 10.1021/acsami.2c00487

    40. [40]

      Fan C, Wang L R, Luo Y, Song Y C, Xu T L, Zhang X J. Cost-Effective Screening of Antimicrobial Performance of Multiple Metal-Organic Frameworks via a Droplet-Based Batch Synthesis Platform[J]. ACS Sus-tain. Chem. Eng., 2022,10(19):6476-6482.

    41. [41]

      Zheng Y P, Tan Y, Zhou W L, Hao X R, Liu X K, Peng J. Three Polyoxovanadates-Based Organic-Inorganic Hybrids: Structural Variation, Bifunctional Electrocatalytic Activities, and Computational Studies[J]. Inorg. Chem., 2021,60(16):12323-12330.

    42. [42]

      Feng Y B, Bai T, Yan H X, Ding F, Bai L H, Feng W X. High Fluorescence Quantum Yield Based on the Through-Space Conjugation of Hyperbranched Polysiloxane[J]. Macromolecules, 2019,52(8):3075-3082.

    43. [43]

      Tong L L, Wang X X, Chen Z Z, Liang Y H, Yang Y P, Gao W, Liu Z H, Tang B. One-Step Fabrication of Functional Carbon Dots with 90% Fluorescence Quantum Yield for Long-Term Lysosome Imaging[J]. Anal. Chem., 2020,92(9):6430-6436.

    44. [44]

      Jana S, Saha S, Chandra A, Fallah S E, Das S, Sinha C. A Cu(Ⅱ) Metal Organic Framework with a Tetranuclear Core: Structure, Magnetism, and Supercapacitor Activity[J]. Cryst. Growth Des., 2022,22(2):1172-1181.

    45. [45]

      Wang Y, Zhou Y N, Liang Y, Cheng L, Fang Y. Chiral Fluorescent Metal-Organic Framework with a Pentanuclear Copper Cluster as an Efficient Luminescent Probe for Dy3+ Ion and Cyano Compounds[J]. Inorg. Chem., 2021,60(20):15085-15090.

    46. [46]

      Sun Y, Zhang N, Guan Q L, Liu C H, Li B, Zhang K Y, Li G H, Xing Y H, Bai F Y, Sun L X. Sensing of Fe3+ and Cr2O72- in Water and White Light: Synthesis, Characterization, and Fluorescence Properties of a Crystalline Bismuth-1, 3, 5-benzenetricarboxylic Acid Frame-work[J]. Cryst. Growth Des., 2019,19(12):7217-7229.

    47. [47]

      Mandal A, Adhikary A, Sarkar A, Das D. Naked Eye Cd2+ Ion Detection and Reversible Iodine Uptake by a Three-Dimensional Pillared-Layered Zn-MOF[J]. Inorg. Chem., 2020,59(23):17758-17765.  

    48. [48]

      Jia J, Gutiérrez-Arzaluz L, Shekhah O, Alsadun N, Czaban-Jóźwiak J, Zhou S, Bakr O M, Mohammed O F, Eddaoudi M. Access to Highly Efficient Energy Transfer in Metal-Organic Frameworks via Mixed Linkers Approach[J]. J. Am. Chem. Soc., 2020,142(19):8580-8584.  

    49. [49]

      Ma J X, Ma T T, Qian R, Zhou L Q, Guo Q, Yang J H, Yang Q F. Na-Ln Heterometallic Coordination Polymers: Structure Modulation by Na+ Concentration and Efficient Detection to Tetracycline Antibiotics and 4-(Phenylazo)aniline[J]. Inorg. Chem., 2021,60(11):7937-7951.

    50. [50]

      Zhao Y F, Zeng H, Zhu X W, Lu W G, Li D. Metal-Organic Frame-works as Photoluminescent Biosensing Platforms: Mechanisms and Applications[J]. Chem. Soc. Rev., 2021,50:4484-4513.

  • 加载中
    1. [1]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    2. [2]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    5. [5]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    6. [6]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    7. [7]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    8. [8]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    9. [9]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    12. [12]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    13. [13]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    14. [14]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    15. [15]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    16. [16]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    17. [17]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    18. [18]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    19. [19]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    20. [20]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

Metrics
  • PDF Downloads(2)
  • Abstract views(455)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return