Citation: Feng-Qiang LIU, Li-Ming WANG, Ding FAN, Li-Hui XU, Hong PAN. Preparation and photocatalytic properties of TiO2/Cu2O/Pt composite hollow microspheres[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 300-308. doi: 10.11862/CJIC.2022.251 shu

Preparation and photocatalytic properties of TiO2/Cu2O/Pt composite hollow microspheres

  • Corresponding author: Li-Ming WANG, wlm@sues.edu.cn
  • Received Date: 11 August 2022
    Revised Date: 26 October 2022

Figures(9)

  • In this study, TiO2/Cu2O/Pt composite hollow microspheres were prepared by precipitation and liquid deposition methods based on anatase TiO2 sol. The morphology and structure of different samples were controlled by different methods, the phase and structure, microscopic morphology, and optical properties of different samples were compared and analyzed. The results show that the introduction of Pt and Cu2O in the composites produces a syner-gistic effect, which effectively suppresses the electron- hole complexation, reduces the forbidden band width, and sig-nificantly enhances the light absorption in the visible region. Compared with TiO2, Cu2O and TiO2/Cu2O photocata-lysts, the TiO2/Cu2O/Pt photocatalyst had a significantly enhanced ability to degrade organic pollutants, can degrade 93% of methyl orange (MO) solution by 120 min of light, the degradation rate was 71% after four cycles, with excel-lent photocatalytic stability.
  • 加载中
    1. [1]

      Sivula K, Le Formal F, Grätzel M. Solar water splitting: Progress using hematite (α-Fe2O 3) photoelectrodes[J]. ChemSusChem, 2011,4:432-449. doi: 10.1002/cssc.201000416

    2. [2]

      Cao D P, Wang J, Zhang J B, Liu S, Xu F, Xu S, Xu X, Mi B, Gao Z. Mechanism investigation of the postnecking treatment to WO3 photoelectrodes[J]. ACS Appl. Energy Mater., 2018,1:4670-4677. doi: 10.1021/acsaem.8b00805

    3. [3]

      Zhao W, Ma W H, Chen C. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradation[J]. J. Am. Chem. Soc., 2004,126(15):4782-4783. doi: 10.1021/ja0396753

    4. [4]

      Chen X B, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chem. Rev., 2007,107(7):2891-2959. doi: 10.1021/cr0500535

    5. [5]

      Xing X L, Zhang M, Hou L L, Xiao L M, Li Q Y, Yang J J. Z-scheme BCN - TiO2 nanocomposites with oxygen vacancy for high efficiency visible light driven hydrogen production[J]. Int. J. Hydrog. Energy, 2017,42(47):28434-28444. doi: 10.1016/j.ijhydene.2017.09.125

    6. [6]

      Koirala R, Pratsinis S E, Baiker A. Synthesis of catalytic materials in flames: Opportunities and challenges[J]. Chem. Soc. Rev., 2016,45(11):3053-3068. doi: 10.1039/C5CS00011D

    7. [7]

      Hu D S, Xie Y, Liu L J, Zhou P P, Zhao J, Xu J W, Ling Y. Constructing TiO2 nanoparticles patched nanorods heterostructure for efficient photodegradation of multiple organics and H2 production[J]. Appl. Catal. B-Environ., 2016,188:207-216. doi: 10.1016/j.apcatb.2016.01.069

    8. [8]

      Kumaravel V, Mathew S, Bartlett J, Pillai S C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances[J]. Appl. Catal. B-Environ., 2019,244:1021-1064. doi: 10.1016/j.apcatb.2018.11.080

    9. [9]

      Wang L B, Cheng B, Zhang L Y, Yu J G. In situ irradiated XPS investigation on S -scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J]. Small, 2021,17(41)2103447. doi: 10.1002/smll.202103447

    10. [10]

      Zhang C B, He H. A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature[J]. Catal. Today, 2007,126(3):345-350.

    11. [11]

      Hu S J, Yu Y J, Guan Y, Lia Y H, Wang B L, Zhu M S. Two-dimensional TiO2 (001) nanosheets as an effective photo - assisted recyclable sensor for the electrochemical detection of bisphenol A[J]. Chin. Chem. Lett., 2020,31(10):2839-2842. doi: 10.1016/j.cclet.2020.08.021

    12. [12]

      Lyu J Z, Zhou L L, Shao J W, Zhou Z, Gao J X, Dong Y M, Wang Z Y, Li J. TiO2 hollow heterophase junction with enhanced pollutant adsorption, light harvesting, and charge separation for photocatalytic degradation of volatile organic compounds[J]. Chem. Eng. J., 2020,391123602. doi: 10.1016/j.cej.2019.123602

    13. [13]

      Sutiono H, Tripathi A M, Chen H M, Chen C H, Su W N, Chen L Y, Dai H J, Wang B J. Facile synthesis of[101] - oriented rutile TiO2 nanorod array on FTO substrate with a tunable anatase-rutile heterojunction for efficient solar water splitting[J]. ACS Sustain. Chem. Eng., 2016,4(11):5963-5971. doi: 10.1021/acssuschemeng.6b01066

    14. [14]

      Wang W K, Chen J J, Gao M, Huang Y X, Zhang X, Yu H Q. Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio[J]. Appl. Catal. B-Environ., 2016,195:69-76. doi: 10.1016/j.apcatb.2016.05.009

    15. [15]

      Liu N, Chang Y, Feng Y L, Cheng Y, Sun X J, Jian H, Feng Y Q, Li X, Zhang H Y. {101} - {001} Surface heterojunction - enhanced antibacterial activity of titanium dioxide nanocrystals under sunlight irradiation[J]. ACS Appl. Mater. Interfaces, 2017,9(7):5907-5915. doi: 10.1021/acsami.6b16373

    16. [16]

      Zhang J, Xu Q, Feng Z C, Li M J, Li C. Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angew. Chem. Int. Ed., 2008,120(9):1790-1793. doi: 10.1002/ange.200704788

    17. [17]

      Zhang X D, Chen J F, Jiang S T, Zhang X L, Bi F K, Yang Y, Wang Y X, Wang Z. Enhanced photocatalytic degradation of gaseous toluene and liquidus tetracycline by anatase/rutile titanium dioxide with heterophase junction derived from materials of institute lavoisier - 125 (Ti): Degradation pathway and mechanism studies[J]. J. Colloid Interface Sci., 2021,588:122-137. doi: 10.1016/j.jcis.2020.12.042

    18. [18]

      Zhen Z, Wu RJ. The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature[J]. J. Taiwan Inst. Chem. Eng., 2015,50:276-281. doi: 10.1016/j.jtice.2014.12.022

    19. [19]

      Chen K Y, Zhu L Z, Yang K. Acid-assisted hydrothermal synthesis of nanocrystalline TiO2 from titanate nanotubes: Influence of acids on the photodegradation of gaseous toluene[J]. J. Environ. Sci., 2015,27:232-240. doi: 10.1016/j.jes.2014.05.044

    20. [20]

      Yang X J, Wang S, Sun H M, Wang X B, Lian J S. Preparation and photocatalytic performance of Cu - doped TiO2 nanoparticles[J]. Trans. Nonferrous Met. Soc. China, 2015,25(2):504-509. doi: 10.1016/S1003-6326(15)63631-7

    21. [21]

      Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V. Cu- doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light[J]. J. Colloid Interface Sci., 2010,352(1):68-74. doi: 10.1016/j.jcis.2010.08.012

    22. [22]

      Xiong L B, Yang F, Yan L L, Yan N N, Yang X, Qiu M Q, Yu Y. Bifunctional photocatalysis of TiO2/Cu2O composite under visible light: Ti3+ in organic pollutant degradation and water splitting[J]. J. Phys. Chem. Solids, 2011,72(9)1104. doi: 10.1016/j.jpcs.2011.06.016

    23. [23]

      Li L, Xu L, Shi W, Guan J. Facile preparation and size - dependent photocatalytic activity of Cu2O nanocrystals modified titania for hydrogen evolution[J]. Int. J. Hydrog. Energy, 2013,38(2)816. doi: 10.1016/j.ijhydene.2012.10.064

    24. [24]

      Liu Y M, Zhang W G, Bian L P, Liang W, Zhang J J, Yu B. Structure, morphology and photocatalytic activity of Cu2O/Pt/TiO2 three - layered nanocomposite films[J]. Mater. Sci. Semicond. Process, 2014,21:26-32. doi: 10.1016/j.mssp.2014.01.022

    25. [25]

      Ren G X, Yu B, Liu Y M, Wang H X, Zhang W G. High photocatalytic activity of Cu2O/TiO2/Pt composite films prepared by magnetron sputtering[J]. Rare Metals, 2017,36(10):821-827. doi: 10.1007/s12598-016-0712-9

    26. [26]

      LIANG Y H, SHANG L. Conformational effects of visible light responsive metal oxide semiconductor catalysts//Proceedings of the 13th National Conference on Solar Photochemistry and Photocatalysis. Beijing: Chinese Chemical Society, 2012: 63

    27. [27]

      Yoo I, Kalanur H. A nanoscale p-n junction photoelectrode consisting of an NiOx layer on a TiO2/CdS nanorod core-shell structure for highly efficient solar water splitting[J]. Appl. Catal. B -Environ., 2019,250:200-212. doi: 10.1016/j.apcatb.2019.02.063

    28. [28]

      Xiong Z, Luo Y, Zhao Y C, Zhang J Y, Zheng C G, Wu J C S. Synthesis, characterization and enhanced photocatalytic CO2 reduction activity of graphene supported TiO2 nanocrystals with coexposed {001} and {101} facets[J]. Phys. Chem. Chem. Phys., 2016,18:13186-13195. doi: 10.1039/C5CP07854G

    29. [29]

      Cao A M, Monnell J D, Matranga C, Wu J M, Cao L L, Gao D. Hierarchical nanostructured copper oxide and its application in arsenic removal[J]. J. Phys. Chem. C, 2007,111(50):18624-18628. doi: 10.1021/jp0773379

    30. [30]

      Li Z, Chang S C, Williams R S. Self - assembly of alkanethiol molecules onto platinum and platinum oxide surfaces[J]. Langmuir, 2003,19(17):6744-6749. doi: 10.1021/la034245b

    31. [31]

      HE C, YU Y, ZHOU C H, HU X F. Structure and photocatalytic activities of Ag/TiO2 thin films[J]. J. Inorg. Mater., 2002,17(5):1025-1033. doi: 10.3321/j.issn:1000-324X.2002.05.020

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

Metrics
  • PDF Downloads(0)
  • Abstract views(594)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return