Citation: Sha OU, Zheng-Qiu WU, Wei XIE, Ping YUE, Zu-Quan HU. Synthesis and Fluorescence Applications of Coordination Polymers Based on Isoleucine-Derived Ligand[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2372-2382. doi: 10.11862/CJIC.2022.249 shu

Synthesis and Fluorescence Applications of Coordination Polymers Based on Isoleucine-Derived Ligand

  • Corresponding author: Zu-Quan HU, huzuquan@gmc.edu.cn
  • Received Date: 9 May 2022
    Revised Date: 22 September 2022

Figures(12)

  • Compound [Zn2(C13H17NO3)2]n (1) was synthesized by a traditional solvothermal method with L-isoleucine derived ligand (C13H19NO3) and Zn(NO3)2·6H2O as a coordination polymer. Single-crystal X-ray diffraction results show that compound 1 crystallizes in the monoclinic crystal system with the P21 space group. The ligands bridge the metal ions to form a 2D layer structure, which further forms a 3D supramolecular network through van der Waals forces between the adjacent layers. The addition of rhodamine B (Rho-B) into the synthetic process of compound 1 leads to a composite material 2. The fluorescence test results showed that the luminescence of compound 1 was mainly based on the ligand under the excitation at 370 nm, while composite 2 showed the additional emission peak of Rho-B at 580 nm besides the ligand. Using the relative intensity ratios of emission peaks (the ligand and Rho-B) as the detection signal, composite 2 was applied to the detection of metal cations and volatile organic compounds (VOCs). The experimental results showed that the material could selectively recognize Cr3+ in H2O and demonstrate a quick response to the benzaldehyde vapor.
  • 加载中
    1. [1]

      Li Y P, Jiang K, Zhang J, Xia T F, Cui Y J, Yang Y, Qian G D. A Turn-On Fluorescence Probe Based on Post-modified Metal-Organic Frameworks for Highly Selective and Fast-Response Hypochlorite Detection[J]. Polyhedron, 2018,148:76-80. doi: 10.1016/j.poly.2018.04.001

    2. [2]

      Li Y P, Zhang X, Zhang L, Jiang K, Yang Y, Cui Y J, Qian G D. A Nanoscale Zr-Based Fluorescent Metal-Organic Framework for Selective and Sensitive Detection of Hydrogen Sulfide[J]. J. Solid State Chem., 2017,255:97-101. doi: 10.1016/j.jssc.2017.07.027

    3. [3]

      Xiao F, Zhang J, Gan J L, Tang Y, Cui Y J, Yang Y, Qian G D. Controlled Dye Release from a Metal-Organic Framework: A New Luminescent Sensor for Water[J]. RSC Adv., 2020,10:2722-2726. doi: 10.1039/C9RA08753B

    4. [4]

      Tian L, Fan T N, Xia T F, Cui Y J, Yang Y, Qian G D. A Luminescent Terbium Metal-Organic Framework for Highly Sensitive and Selective Detection of Uric Acid in Aqueous Media[J]. J. Sold State Chem., 2019,272:55-61. doi: 10.1016/j.jssc.2019.01.027

    5. [5]

      Feng X G, Bo X J, Guo L P. An Advanced Hollow Bimetallic Carbide/Nitrogen-Doped Carbon Nanotube for Efficient Catalysis of Oxygen Reduction and Hydrogen Evolution and Oxygen Evolution Reaction[J]. J. Colloid Interface Sci., 2020,575:69-77. doi: 10.1016/j.jcis.2020.04.093

    6. [6]

      Chen J W, Zhang Z G, Bao Z B, Su Y, Xing H B, Yang Q W, Ren Q L. Functionalized Metal-Organic Framework as a Biomimetic Heterogeneous Catalyst for Transfer Hydrogenation of Imines[J]. ACS Appl. Mater. Interfaces, 2017,9(11):9772-9777. doi: 10.1021/acsami.7b00562

    7. [7]

      Nie R F, Chen M D, Pei Y C, Zhang B Y, Qi L, Chen J W, Gob T W, Qi Z Y, Zhang Z G, Huang W Y. Room-Temperature Tandem Condensation-Hydrogenation Catalyzed by Porous C3N4 Nanosheet-Supported Pd Nanoparticles[J]. ACS Appl. Mater. Interfaces, 2019,7:3356-3363.

    8. [8]

      Zhang H Y, Zhang J, Li Q, Song A X, Tian H L, Wang J Q, Li Z H, Luan Y X. Site-Specific MOF-Based Immunotherapeutic Nanoplatforms via Synergistic Tumor Cells-Targeted Treatment and Dendritic Cells-Targeted Immunomodulation[J]. Biomaterials, 2020,245119983. doi: 10.1016/j.biomaterials.2020.119983

    9. [9]

      Zhang H Y, Li Q, Liu R L, Zhang X K, Li Z H, Luan Y X. A Versatile Prodrug Strategy to In Situ Encapsulate Drugs in MOF Nanocarriers: A Case of Cytarabine-IR820 Prodrug Encapsulated ZIF-8 toward Chemo-Photothermal Therapy[J]. Adv. Funct. Mater., 2018,281802830. doi: 10.1002/adfm.201802830

    10. [10]

      Zhang H Y, Jiang W, Liu R L, Zhang J, Zhang D, Li Z H, Luan Y X. Rational Design of MOF Nanocarrier-Based Co-delivery System of Doxorubicin Hydrochloride/Verapamil Hydrochloride for Overcoming Multidrug Resistance with Efficient Targeted Cancer Therapy[J]. ACS Appl. Mater. Interfaces, 2017,9:19687-19697. doi: 10.1021/acsami.7b05142

    11. [11]

      Zhou X H, Li L, Li H H, Li A, Yang T, Huang W. A Flexible Eu(Ⅲ)-Based Metal-Organic Framework: Turn-Off Luminescent Sensor for the Detection of Fe(Ⅲ) and Picric Acid[J]. Dalton Trans., 2013,42(16):5718-5723. doi: 10.1039/c3dt00055a

    12. [12]

      Xu H, Liu F, Cui Y J, Chen B L, Qian G D. A Luminescent Nanoscale Metal-Organic Framework for Sensing of Nitroaromatic Explosives[J]. Chem. Commun., 2011,47(11):3153-3155. doi: 10.1039/c0cc05166g

    13. [13]

      Lim K S, Jeong S Y, Kang D W, Song J H, Jo H, Lee W R, Phang W J, Monn D, Hong C S. Luminescent Metal-Organic Framework Sensor: Exceptional Cd2+ Turn-On Detection and First In Situ Visualization of Cd2+ Ion Diffusion to a Crystal[J]. Chem.-Eur. J., 2017,23(20):4803-4809. doi: 10.1002/chem.201604252

    14. [14]

      Lui C, Yan B. Zeolite-Type Metal Organic Frameworks Immobilized Eu3+ for Cation Sensing in Aqueous Environment[J]. J. Colloid Interface Sci., 2015,459:206-211. doi: 10.1016/j.jcis.2015.08.025

    15. [15]

      Pan Y N, Wang J D, Guo X M, Liu X Y, Tang X L, Zhang H X. A New Three-Dimensional Zinc-Based Metal-Organic Framework as a Fluorescent Sensor for Detection of Cadmium ion and Nitrobenzene[J]. J. Colloid Interface Sci., 2018,513:481-426.

    16. [16]

      Ji G F, Liu J J, Gao X C, Sun W, Wang J Z, Zhao S L, Liu Z L. A Luminescent Lanthanide MOF for Selectively and Ultra-High Sensitively Detecting Pb2+ Ion in Aqueous Solution[J]. J. Mater. Chem. A, 2017,5(21):10200-10205. doi: 10.1039/C7TA02439H

    17. [17]

      Li L, Chen Q, Niu Z G, Zhou X H, Yang T, Huang W. Lanthanide Metal-Organic Frameworks Assembled from a Fluorene-Based Ligand: Selective Sensing of Pb2+ and Fe3+ Ions[J]. J. Mater. Chem. C, 2016,4(9):1900-1905. doi: 10.1039/C5TC04320D

    18. [18]

      Zhao J, Wang Y N, Dong W W, Wu Y P, Li D S, Zhang Q C. A Robust Luminescent Tb (Ⅲ)-MOF with Lewis Basic Pyridyl Sites for the Highly Sensitive Detection of Metal Ions and Small Molecules[J]. Inorg. Chem., 2016,55(7):3265-3271. doi: 10.1021/acs.inorgchem.5b02294

    19. [19]

      Du J L, Gao J P, Li C P, Zhang X Y, Hou J X, Jing X, Mu Y J, Li L J. A Stable 3D Cd (Ⅱ) Metal-Organic Framework for Highly Sensitive Detection of Cu2+ Ions and Nitroaromatic Explosives[J]. RSC Adv., 2017,7(78):49618-49625. doi: 10.1039/C7RA08977E

    20. [20]

      Du J L, Gao J P, Li C P, Zhang X Y, Hou J X, Jing X, Mu Y J, Li L J. A Stable 3D Cd (Ⅱ) Metal-Organic Framework for Highly Sensitive Detection of Cu2+ Ions and Nitroaromatic Explosives[J]. Chem.-Eur. J., 2015,22(2):477-480.

    21. [21]

      Zheng J P, Ou S, Zhao M, Wu C D. A Highly Sensitive Luminescent Dye@MOF Composite for Probing Different Volatile Organic Compounds[J]. ChemPlusChem, 2016,81:758-763. doi: 10.1002/cplu.201600057

    22. [22]

      He L, Mao Y, Zhang P Y, Xu T T, Chen J, Song M X, Pan M, Ni L L. Perylene Bisimide Anchored Palygorskite Nanofibers as a Solid-Sate Fluorescence Sensor for Detection of Volatile Organic Compounds[J]. Appl. Clay Sci., 2020,190105437. doi: 10.1016/j.clay.2020.105437

    23. [23]

      Prusti B, Chakravarty M. Electron-Rich Anthracene-Based Twisted π-System as a Highly Fluorescent Dye: Easy Recognition of Solvents and Volatile Organic Compounds[J]. Dyes Pigment., 2020,181108543. doi: 10.1016/j.dyepig.2020.108543

    24. [24]

      Zhao J, Wang Y N, Dong W W, Wu Y P, Li D S, Zhang Q C. A Robust Luminescent Tb (Ⅲ)-MOF with Lewis Basic Pyridyl Sites for the Highly Sensitive Detection of Metal Ions and Small Molecules[J]. Inorg. Chem., 2016,55(7):3265-3271. doi: 10.1021/acs.inorgchem.5b02294

    25. [25]

      Wu L L, Wang Z, Zhao S N, Meng X, Song X Z, Feng J, Song S Y, Zhang H J. A Metal-Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(Ⅱ) Ion Detection[J]. Chem.-Eur. J., 2015,22(2):477-480.

    26. [26]

      Yang X L, Xie M H, Zou C, Wu C D. Syntheses, Crystal Structures and Optical Properties of Six Homochiral Coordination Networks Based on Phenyl Acid-Amino Acids[J]. CrystEngComm, 2011,13:6422-6430. doi: 10.1039/c1ce05422h

    27. [27]

      Yuan W Z, Lu P, Chen S, Lam J, W Y, Wang Z, Liu Y, Kwok H S, Ma Y, Tang B Z. Changing the Behavior of Chromophores from Aggregation-Caused Quenching to Aggregation-Induced Emission: Development of Highly Efficient Light Emitters in the Solid State[J]. Adv. Mater., 2010,22(19):2159-2163. doi: 10.1002/adma.200904056

    28. [28]

      Yang X G, Yan D P. Strongly Enhanced Long-Lived Persistent Room Temperature Phosphorescence Based on the Formation of Metal-Organic Hybrid[J]. Adv. Opt. Mater., 2016,4(6):897-905. doi: 10.1002/adom.201500666

    29. [29]

      Gong Y Y, Chen G, Peng Q, Yuan W Z, Xie Y J, Li S H, Zhang Y M, Tang B Z. Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism from Pure Organic Luminogen[J]. Adv. Mater., 2015,27(40):6195-6201. doi: 10.1002/adma.201502442

  • 加载中
    1. [1]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    2. [2]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    9. [9]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    10. [10]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(2)
  • Abstract views(301)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return