Citation: Ming-Hao HUANG, Zhuo LI, Lei-Lei DU, Zhi-Kang JIN, Ren-Hong LI. CuPd/MgO for Efficient Catalytic Hydrogen Production from Formaldehyde Solution at Room Temperature[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2452-2458. doi: 10.11862/CJIC.2022.247 shu

CuPd/MgO for Efficient Catalytic Hydrogen Production from Formaldehyde Solution at Room Temperature

  • Corresponding author: Ren-Hong LI, lirenhong@zstu.edu.cn
  • Received Date: 29 June 2022
    Revised Date: 9 October 2022

Figures(5)

  • The composite catalyst of CuPd alloy nanoparticles supported on MgO (CuPd/MgO) was prepared by an impregnation reduction method. CuPd/MgO showed excellent catalytic performance during formaldehyde reforming for hydrogen production at room temperature in the air. The turnover frequency (TOF) of CuPd/MgO was as high as 812.6 h-1, which was respectively 2.3 times and 23 times higher than that of Cu/MgO (TOF=356.7 h-1) and Pd/MgO (TOF=34.8 h-1) under the same reaction conditions. Based on the experimental observations and characterization results, we found that a strong metal support interaction (SMSI) between CuPd alloy nanoparticles and MgO support enriched with defects on the surface was present in CuPd/MgO. This interaction was conducive to the transfer and recombination of electrons on the catalyst, greatly promoting the adsorption, activation, and reduction of oxygen on the catalyst surface to form superoxide anion radical (·O2-). The ·O2- combined with the proton generated by the C—H bond breaking of formaldehyde to form superoxide radical (·OOH). The hydrogen radical (·H) dissociated from water molecules in the reaction system continuously combined with ·OOH to generate hydrogen and oxygen, leading to the generation of hydrogen and the regeneration of oxygen.
  • 加载中
    1. [1]

      Feng J X, Wu J Q, Tong Y X, Li G R. Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni3S2 Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption[J]. J. Am. Chem. Soc., 2018,140:610-617. doi: 10.1021/jacs.7b08521

    2. [2]

      Turner J A. A Realizable Renewable Energy Future[J]. Science, 1999,285:687-689. doi: 10.1126/science.285.5428.687

    3. [3]

      Chaubey R, Sahu S, James O O, Maity S. A Review on Development of Industrial Processes and Emerging Techniques for Production of Hydrogen from Renewable and Sustainable Sources[J]. Renew. Sust. Energ. Rev., 2013,23:443-462. doi: 10.1016/j.rser.2013.02.019

    4. [4]

      Brentner L B, Peccia J, Zimmerman J B. Challenges in Developing Biohydrogen as a Sustainable Energy Source: Implications for a Research Agenda[J]. Environ. Sci. Technol., 2010,44:2243-2254. doi: 10.1021/es9030613

    5. [5]

      Wang C L, Astruc D. Recent Developments of Nanocatalyzed Liquid-Phase Hydrogen Generation[J]. Chem. Soc. Rev., 2021,50:3437-3484. doi: 10.1039/D0CS00515K

    6. [6]

      Trincado M, Sinha V, Rodriguez-Lugo R E, Pribanic B, De Bruin B, Grützmacher H. Homogeneously Catalysed Conversion of Aqueous Formaldehyde to H2 and Carbonate[J]. Nat. Commun., 2017,814990. doi: 10.1038/ncomms14990

    7. [7]

      Bi Y P, Lu G X. Morphology-Controlled Preparation of Silver Nanocrystals and Their Application in Catalysis[J]. Chem. Lett., 2008,37:514-515. doi: 10.1246/cl.2008.514

    8. [8]

      Bi Y P, Lu G X. Iodide Ions Control Galvanic Replacement Growth of Uniform Rhodium Nanotubes at Room Temperature[J]. Chem. Commun., 2008,47:6402-6404.

    9. [9]

      LI S P. Pd Catalyst Formaldehyde to Produce Hydrogen at Room Temperature. Lanzhou: Lanzhou University of Technology, 2016: 26-27

    10. [10]

      Du X R, Tang H L, Qiao B T. Oxidative Strong Metal-Support Interactions[J]. Catalysts, 2021,11896. doi: 10.3390/catal11080896

    11. [11]

      Li R H, Liu Z Q, Trinh Q T, Miao Z Q, Chen S, Qian K C, Wong R J, Xi S B, Yan Y, Borgna A, Liang S P, Wei T, Dai Y H, Wang P, Tang Y, Yan X Q, Choksi S T, Liu W. Strong Metal-Support Interaction for 2D Materials: Application in Noble Metal/TiB2 Heterointerfaces and Their Enhanced Catalytic Performance for Formic Acid Dehydrogenation[J]. Adv. Mater., 2021,332101536. doi: 10.1002/adma.202101536

    12. [12]

      Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S. Strong Metal-Support Interactions Between Gold Nanoparticles and ZnO Nanorods in CO Oxidation[J]. J. Am. Chem. Soc., 2012,134:10251-10258. doi: 10.1021/ja3033235

    13. [13]

      Tauster S J, Fung S C, Baker R T K, Horsley J A. Strong-Interactions in Supported-Metal Catalysts[J]. Science, 1981,211:1121-1125. doi: 10.1126/science.211.4487.1121

    14. [14]

      Belton D N, Sun Y M, White J M. Encapsulation and Electronic Effects in a Thin-Film Model of a Rhodium-Titania Catalyst[J]. J. Am. Chem. Soc., 1984,106:3059-3060. doi: 10.1021/ja00322a066

    15. [15]

      Li R H, Zhu X H, Yan X Q, Kobayashi H, Yoshida S, Chen W X, Du L L, Qian K C, Wu B L, Zou S H, Lu L F, Yi W Z, Zhou Y H, Fan J. Oxygen-Controlled Hydrogen Evolution Reaction: Molecular Oxygen Promotes Hydrogen Production from Formaldehyde Solution Using Ag/MgO Nanocatalyst[J]. ACS Catal., 2017,7:1478-1484. doi: 10.1021/acscatal.6b03370

    16. [16]

      Wang H, Wang L, Lin D, Feng X, Niu Y M, Zhang B S, Xiao F S. Strong Metal-Support Interactions on Gold Nanoparticle Catalysts Achieved through Le Chatelier's Principle[J]. Nat. Catal., 2021,4:418-424. doi: 10.1038/s41929-021-00611-3

    17. [17]

      Chen D, Sun P C, Liu H, Yang J. Bimetallic Cu-Pd Alloy Multipods and Their Highly Electrocatalytic Performance for Formic Acid Oxidation and Oxygen Reduction[J]. J. Mater. Chem. A, 2017,5:4421-4429. doi: 10.1039/C6TA10476B

    18. [18]

      Li R H, Zhu X H, Du L L, Qian K C, Wu B L, Kawabata S, Kobayashi H, Yan X Q, Chen W X. All-Solid-State Magnesium Oxide Supported Group Ⅷ and ⅠB Metal Catalysts for Selective Catalytic Reforming of Aqueous Aldehydes into Hydrogen[J]. Int. J. Hydrog. Energy, 2017,42:10834-10843. doi: 10.1016/j.ijhydene.2017.02.041

    19. [19]

      Chen S, Liang S P, Wu B L, Lan Z H, Guo Z W, Kobayashi H, Yan X Q, Li R H. Ultrasmall Silver Clusters Stabilized on MgO for Robust Oxygen-Promoted Hydrogen Production from Formaldehyde Reforming[J]. ACS Appl. Mater. Interfaces, 2019,11:33946-33954. doi: 10.1021/acsami.9b11023

    20. [20]

      Qian K C, Du L L, Zhu X H, Laing S P, Chen S, Kobayashi H, Yan X Q, Xu M, Dai Y H, Li R H. Directional Oxygen Activation by Oxygen-Vacancy Rich WO2 Nanorods for Superb Hydrogen Evolution via Formaldehyde Reforming[J]. J. Mater. Chem. A, 2019,7:14592-14601. doi: 10.1039/C9TA03051D

    21. [21]

      Liang S P, Chen S, Guo Z W, Lan Z H, Kobayashi H, Yan X Q, Li R H. In Situ Generated Electron-Deficient Metallic Copper as the Catalytically Active Site for Enhanced Hydrogen Production from Alkaline Formaldehyde Solution[J]. Catal. Sci. Technol., 2019,9:5292-5300. doi: 10.1039/C9CY01136F

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(9)
  • Abstract views(555)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return