Citation: Ming-Hao HUANG, Zhuo LI, Lei-Lei DU, Zhi-Kang JIN, Ren-Hong LI. CuPd/MgO for Efficient Catalytic Hydrogen Production from Formaldehyde Solution at Room Temperature[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2452-2458. doi: 10.11862/CJIC.2022.247 shu

CuPd/MgO for Efficient Catalytic Hydrogen Production from Formaldehyde Solution at Room Temperature

  • Corresponding author: Ren-Hong LI, lirenhong@zstu.edu.cn
  • Received Date: 29 June 2022
    Revised Date: 9 October 2022

Figures(5)

  • The composite catalyst of CuPd alloy nanoparticles supported on MgO (CuPd/MgO) was prepared by an impregnation reduction method. CuPd/MgO showed excellent catalytic performance during formaldehyde reforming for hydrogen production at room temperature in the air. The turnover frequency (TOF) of CuPd/MgO was as high as 812.6 h-1, which was respectively 2.3 times and 23 times higher than that of Cu/MgO (TOF=356.7 h-1) and Pd/MgO (TOF=34.8 h-1) under the same reaction conditions. Based on the experimental observations and characterization results, we found that a strong metal support interaction (SMSI) between CuPd alloy nanoparticles and MgO support enriched with defects on the surface was present in CuPd/MgO. This interaction was conducive to the transfer and recombination of electrons on the catalyst, greatly promoting the adsorption, activation, and reduction of oxygen on the catalyst surface to form superoxide anion radical (·O2-). The ·O2- combined with the proton generated by the C—H bond breaking of formaldehyde to form superoxide radical (·OOH). The hydrogen radical (·H) dissociated from water molecules in the reaction system continuously combined with ·OOH to generate hydrogen and oxygen, leading to the generation of hydrogen and the regeneration of oxygen.
  • 加载中
    1. [1]

      Feng J X, Wu J Q, Tong Y X, Li G R. Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni3S2 Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption[J]. J. Am. Chem. Soc., 2018,140:610-617. doi: 10.1021/jacs.7b08521

    2. [2]

      Turner J A. A Realizable Renewable Energy Future[J]. Science, 1999,285:687-689. doi: 10.1126/science.285.5428.687

    3. [3]

      Chaubey R, Sahu S, James O O, Maity S. A Review on Development of Industrial Processes and Emerging Techniques for Production of Hydrogen from Renewable and Sustainable Sources[J]. Renew. Sust. Energ. Rev., 2013,23:443-462. doi: 10.1016/j.rser.2013.02.019

    4. [4]

      Brentner L B, Peccia J, Zimmerman J B. Challenges in Developing Biohydrogen as a Sustainable Energy Source: Implications for a Research Agenda[J]. Environ. Sci. Technol., 2010,44:2243-2254. doi: 10.1021/es9030613

    5. [5]

      Wang C L, Astruc D. Recent Developments of Nanocatalyzed Liquid-Phase Hydrogen Generation[J]. Chem. Soc. Rev., 2021,50:3437-3484. doi: 10.1039/D0CS00515K

    6. [6]

      Trincado M, Sinha V, Rodriguez-Lugo R E, Pribanic B, De Bruin B, Grützmacher H. Homogeneously Catalysed Conversion of Aqueous Formaldehyde to H2 and Carbonate[J]. Nat. Commun., 2017,814990. doi: 10.1038/ncomms14990

    7. [7]

      Bi Y P, Lu G X. Morphology-Controlled Preparation of Silver Nanocrystals and Their Application in Catalysis[J]. Chem. Lett., 2008,37:514-515. doi: 10.1246/cl.2008.514

    8. [8]

      Bi Y P, Lu G X. Iodide Ions Control Galvanic Replacement Growth of Uniform Rhodium Nanotubes at Room Temperature[J]. Chem. Commun., 2008,47:6402-6404.

    9. [9]

      LI S P. Pd Catalyst Formaldehyde to Produce Hydrogen at Room Temperature. Lanzhou: Lanzhou University of Technology, 2016: 26-27

    10. [10]

      Du X R, Tang H L, Qiao B T. Oxidative Strong Metal-Support Interactions[J]. Catalysts, 2021,11896. doi: 10.3390/catal11080896

    11. [11]

      Li R H, Liu Z Q, Trinh Q T, Miao Z Q, Chen S, Qian K C, Wong R J, Xi S B, Yan Y, Borgna A, Liang S P, Wei T, Dai Y H, Wang P, Tang Y, Yan X Q, Choksi S T, Liu W. Strong Metal-Support Interaction for 2D Materials: Application in Noble Metal/TiB2 Heterointerfaces and Their Enhanced Catalytic Performance for Formic Acid Dehydrogenation[J]. Adv. Mater., 2021,332101536. doi: 10.1002/adma.202101536

    12. [12]

      Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S. Strong Metal-Support Interactions Between Gold Nanoparticles and ZnO Nanorods in CO Oxidation[J]. J. Am. Chem. Soc., 2012,134:10251-10258. doi: 10.1021/ja3033235

    13. [13]

      Tauster S J, Fung S C, Baker R T K, Horsley J A. Strong-Interactions in Supported-Metal Catalysts[J]. Science, 1981,211:1121-1125. doi: 10.1126/science.211.4487.1121

    14. [14]

      Belton D N, Sun Y M, White J M. Encapsulation and Electronic Effects in a Thin-Film Model of a Rhodium-Titania Catalyst[J]. J. Am. Chem. Soc., 1984,106:3059-3060. doi: 10.1021/ja00322a066

    15. [15]

      Li R H, Zhu X H, Yan X Q, Kobayashi H, Yoshida S, Chen W X, Du L L, Qian K C, Wu B L, Zou S H, Lu L F, Yi W Z, Zhou Y H, Fan J. Oxygen-Controlled Hydrogen Evolution Reaction: Molecular Oxygen Promotes Hydrogen Production from Formaldehyde Solution Using Ag/MgO Nanocatalyst[J]. ACS Catal., 2017,7:1478-1484. doi: 10.1021/acscatal.6b03370

    16. [16]

      Wang H, Wang L, Lin D, Feng X, Niu Y M, Zhang B S, Xiao F S. Strong Metal-Support Interactions on Gold Nanoparticle Catalysts Achieved through Le Chatelier's Principle[J]. Nat. Catal., 2021,4:418-424. doi: 10.1038/s41929-021-00611-3

    17. [17]

      Chen D, Sun P C, Liu H, Yang J. Bimetallic Cu-Pd Alloy Multipods and Their Highly Electrocatalytic Performance for Formic Acid Oxidation and Oxygen Reduction[J]. J. Mater. Chem. A, 2017,5:4421-4429. doi: 10.1039/C6TA10476B

    18. [18]

      Li R H, Zhu X H, Du L L, Qian K C, Wu B L, Kawabata S, Kobayashi H, Yan X Q, Chen W X. All-Solid-State Magnesium Oxide Supported Group Ⅷ and ⅠB Metal Catalysts for Selective Catalytic Reforming of Aqueous Aldehydes into Hydrogen[J]. Int. J. Hydrog. Energy, 2017,42:10834-10843. doi: 10.1016/j.ijhydene.2017.02.041

    19. [19]

      Chen S, Liang S P, Wu B L, Lan Z H, Guo Z W, Kobayashi H, Yan X Q, Li R H. Ultrasmall Silver Clusters Stabilized on MgO for Robust Oxygen-Promoted Hydrogen Production from Formaldehyde Reforming[J]. ACS Appl. Mater. Interfaces, 2019,11:33946-33954. doi: 10.1021/acsami.9b11023

    20. [20]

      Qian K C, Du L L, Zhu X H, Laing S P, Chen S, Kobayashi H, Yan X Q, Xu M, Dai Y H, Li R H. Directional Oxygen Activation by Oxygen-Vacancy Rich WO2 Nanorods for Superb Hydrogen Evolution via Formaldehyde Reforming[J]. J. Mater. Chem. A, 2019,7:14592-14601. doi: 10.1039/C9TA03051D

    21. [21]

      Liang S P, Chen S, Guo Z W, Lan Z H, Kobayashi H, Yan X Q, Li R H. In Situ Generated Electron-Deficient Metallic Copper as the Catalytically Active Site for Enhanced Hydrogen Production from Alkaline Formaldehyde Solution[J]. Catal. Sci. Technol., 2019,9:5292-5300. doi: 10.1039/C9CY01136F

  • 加载中
    1. [1]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    8. [8]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    9. [9]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    10. [10]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    11. [11]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    12. [12]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    16. [16]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

Metrics
  • PDF Downloads(14)
  • Abstract views(1155)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return