Citation: Xu-Feng LIU, Bo XU, Hang XU, Yu-Long LI. Diiron Butane-1, 2-dithiolate Complexes with Phosphine Ligands: Preparation, Crystal Structures, and Electrochemical Catalytic Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2521-2529. doi: 10.11862/CJIC.2022.245 shu

Diiron Butane-1, 2-dithiolate Complexes with Phosphine Ligands: Preparation, Crystal Structures, and Electrochemical Catalytic Performance

  • Corresponding author: Xu-Feng LIU, nkxfliu@126.com
  • Received Date: 12 June 2022
    Revised Date: 3 September 2022

Figures(8)

  • Treatment of the parent complex [Fe2(CO)6(μ-SCH2CH(CH2CH3)S)] (1) with tri(2-furyl)phosphine, n-propyldiphenylphosphine, bis(diphenylphosphino)acetylene, or 1, 2-bis(diphenylphosphino)benzene and Me3NO ∙ 2H2O as the decarbonylating agent yielded the monosubstituted complexes [Fe2(CO)5(L)(μ-SCH2CH(CH2CH3)S)] (L=P(2-C4H3O)3, 2; Ph2PCH2CH2CH3, 3), bridging complex {[Fe2(CO)5(μ-SCH2CH(CH2CH3)S)]2(Ph2PC≡CPPh2)} (4), and chelating complex [Fe2(CO)4(κ2-(Ph2P)2(1, 2-C6H4))(μ-SCH2CH(CH2CH3)S)] (5), respectively. Complexes 2-5 have been characterized by elemental analysis, IR, and 1H (31P{1H}) NMR spectroscopy, as well as confirmed by single crystal X-ray diffraction analysis. Moreover, the electrochemistry of complexes 2-5 has been studied, showing that these complexes can catalyze the reduction of proton to H2 in the presence of a weak acid HOAc as a proton source.
  • 加载中
    1. [1]

      Cammack R. Hydrogenase Sophistication[J]. Nature, 1999,397(6716):214-215. doi: 10.1038/16601

    2. [2]

      Frey M. Hydrogenases: Hydrogen-Activating Enzymes[J]. ChemBioChem, 2002,3(2/3):153-160.

    3. [3]

      Darensbourg M Y, Lyon E J, Smee J J. The Bio-organometallic Chemistry of Active Site Iron in Hydrogenases[J]. Coord. Chem. Rev., 2000,206-207:533-561. doi: 10.1016/S0010-8545(00)00268-X

    4. [4]

      Evans D J, Pickett C J. Chemistry and the Hydrogenases[J]. Chem. Soc. Rev., 2003,32(5):268-275. doi: 10.1039/b201317g

    5. [5]

      Tard C, Pickett C J. Structural and Functional Analogs of the Active Sites of the[Fe]-, [NiFe]-, and[FeFe]-Hydrogenases[J]. Chem. Rev., 2009,109(6):2245-2274. doi: 10.1021/cr800542q

    6. [6]

      Schilter D, Camara J M, Huynh M T, Hammes-Schiffer S, Rauchfuss T B. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides[J]. Chem. Rev., 2016,116(15):8693-9749. doi: 10.1021/acs.chemrev.6b00180

    7. [7]

      Peters J W, Lanzilotta W N, Lemon B J, Seefeldt L C. X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution[J]. Science, 1998,282(5395):1853-1858. doi: 10.1126/science.282.5395.1853

    8. [8]

      Nicolet Y, Piras C, Legrand P, Hatchikian C E, Fontecilla-Camps J C. Desulfovibrio Desulfuricans Iron Hydrogenase: The Structure Shows Unusual Coordination to an Active Site Fe Binuclear Center[J]. Structure, 1999,7(1):13-23. doi: 10.1016/S0969-2126(99)80005-7

    9. [9]

      Fan H J, Hall M B. A Capable Bridging Ligand for Fe-Only Hydrogenase: Density Functional Calculations of a Low-Energy Route for Heterolytic Cleavage and Formation of Dihydrogen[J]. J. Am. Chem. Soc., 2001,123(16):3828-3829. doi: 10.1021/ja004120i

    10. [10]

      Lyon E J, Georgakaki I P, Reibenspies J H, Darensbourg M Y. Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase[J]. Angew. Chem. Int. Ed., 1999,38(21):3178-3180. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4

    11. [11]

      Lawrence J D, Li H, Rauchfuss T B, Bénard M, Rohmer M M. Diiron Azadithiolates as Models for the Iron-Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics[J]. Angew. Chem. Int. Ed., 2001,40(9):1768-1771. doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E

    12. [12]

      Song L C, Yang Z Y, Bian H Z, Hu Q M. Novel Single and Double Diiron Oxadithiolates as Models for the Active Site of[Fe]-Only Hydrogenases[J]. Organometallics, 2004,23(13):3082-3084. doi: 10.1021/om049752i

    13. [13]

      Le Cloirec A, Best S P, Borg S, Davies S C, Evans D J, Hughes D L, Pickett C J. A Di-iron Dithiolate Possessing Structural Elements of the Carbonyl/Cyanide Sub-site of the H-Centre of Fe-Only Hydrogenase[J]. Chem. Commun., 1999:2285-2286.

    14. [14]

      Mejia-Rodriguez R, Chong D, Reibenspies J H, Soriaga M P, Darensbourg M Y. The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H2 Production Electrocatalysts: Iron Hydrogenase Model Complexes[J]. J. Am. Chem. Soc., 2004,126(38):12004-12014. doi: 10.1021/ja039394v

    15. [15]

      Capon J F, Hassnaoui S E, Gloaguen F, Schollhammer P, Talarmin J. N-Heterocyclic Carbene Ligands as Cyanide Mimics in Diiron Models of the All-Iron Hydrogenase Active Site[J]. Organometallics, 2005,24(9):2020-2022. doi: 10.1021/om049132h

    16. [16]

      Ghosh S, Hogarth G, Hollingsworth N, Holt K B, Richard I, Richmond M G, Sanchez B E, Unwin D. Models of the Iron-Only Hydrogenase: A Comparison of Chelate and Bridge Isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as Proton-Reduction Catalysts[J]. Dalton Trans., 2013,42(19):6775-6792. doi: 10.1039/c3dt50147g

    17. [17]

      Li A, Yang J, Lü S, Gui M S, Yan P, Gao F, Du L B, Yang Q, Li Y L. Synthesis, Characterization and Electrochemical Properties of Diiron Azadithiolate Complexes Fe2[(μ-SCH2)2NCH2CCH](CO)5L (L=CO or monophosphines)[J]. Polyhedron, 2021,196115007. doi: 10.1016/j.poly.2020.115007

    18. [18]

      Yan L, Hu K, Liu X F, Li Y L, Liu X H, Jiang Z Q. Diiron Ethane-1, 2-dithiolate Complexes with 1, 2, 3-Thiadiazole Moiety: Synthesis, X-ray Crystal Structures, Electrochemistry and Fungicidal Activity[J]. Appl. Organomet. Chem., 2021,35(2)e6084.

    19. [19]

      Zhang X, Zhang T Y, Li B, Zhang G H, Hai L, Ma X Y, Wu W B. Direct Synthesis of Phenol by Novel [FeFe]-Hydrogenase Model Complexes as Catalysts of Benzene Hydroxylation with H2O2[J]. RSC Adv., 2017,7(5):2934-2942. doi: 10.1039/C6RA27831K

    20. [20]

      Lin H M, Mu C, Li A, Liu X F, Li Y L, Jiang Z Q, Wu H K. Synthesis, Characterization, and Electrochemistry of Phosphine-Substituted Diiron Butane-1, 2-dithiolate Complexes[J]. J. Coord. Chem., 2019,72(15):2517-2530. doi: 10.1080/00958972.2019.1659248

    21. [21]

      APEX2, Version 2009.7-0, Bruker AXS, Inc., Madison, WI, 2007.

    22. [22]

      Sheldrick G M. SADABS: Program for Absorption Correction of Area Detector Frames. Bruker AXS Inc. : Madison, WI, 2001.

    23. [23]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    24. [24]

      Sheldrick G M. A Short History of SHELX[J]. Acta Crystallogr. Sect. A, 2008,A64:112-122.

    25. [25]

      Li P, Wang M, He C J, Li G H, Liu X Y, Chen C N, Åkermark B, Sun L C. Influence of Tertiary Phosphanes on the Coordination Configurations and Electrochemical Properties of Iron Hydrogenase Model Complexes: Crystal Structures of[(μ-S2C3H6)Fe2(CO)6-nLn] (L=PMe2Ph, n=1, 2; PPh3, P(OEt)3, n=1)[J]. Eur. J. Inorg. Chem., 2005,2005(12):2506-2513. doi: 10.1002/ejic.200400947

    26. [26]

      Lin H M, Li J R, Mu C, Li A, Liu X F, Zhao P H, Li Y L, Jiang Z Q, Wu H K. Synthesis, Characterization, and Electrochemistry of Monophosphine-Containing Diiron Propane-1, 2-dithiolate Complexes Related to the Active Site of[FeFe]-Hydrogenases[J]. Appl. Organomet. Chem., 2019,33(11)e5196.

    27. [27]

      Gao W M, Ekström J, Liu J H, Chen C N, Eriksson L, Weng L H, Åkermark B, Sun L C. Binuclear Iron-Sulfur Complexes with Bidentate Phosphine Ligands as Active Site Models of Fe-Hydrogenase and Their Catalytic Proton Reduction[J]. Inorg. Chem., 2007,46(6):1981-1991. doi: 10.1021/ic0610278

    28. [28]

      Zhao P H, Hu M Y, Li J R, Ma Z Y, Wang Y Z, He J, Li Y L, Liu X F. Influence of Dithiolate Bridges on the Structures and Electrocatalytic Performance of Small Bite-Angle PNP-Chelated Diiron Complexes Fe2(μ-xdt)(CO)4{κ2-(Ph2P)2NR} Related to[FeFe]-Hydrogenases[J]. Organometallics, 2019,38(2):385-394. doi: 10.1021/acs.organomet.8b00759

    29. [29]

      Chen F Y, He J, Mu C, Liu X F, Li Y L, Jiang Z Q, Wu H K. Synthesis and Characterization of Five Diiron Ethanedithiolate Complexes with Acetate Group and Phosphine Ligands[J]. Polyhedron, 2019,160:74-82. doi: 10.1016/j.poly.2018.12.027

    30. [30]

      Yan L, Yang J, Lü S, Liu X F, Li Y L, Liu X H, Jiang Z Q. Phosphine-Containing Diiron Propane-1, 2-dithiolate Derivatives: Synthesis, Spectroscopy, X-ray Crystal Structures, and Electrochemistry[J]. Catal. Lett., 2021,151(7):1857-1867. doi: 10.1007/s10562-020-03450-2

    31. [31]

      Lian M, He J, Yu X Y, Mu C, Liu X F, Li Y L, Jiang Z Q. Diiron Ethanedithiolate Complexes with Acetate Ester: Synthesis, Characterization and Electrochemical Properties[J]. J. Organomet. Chem., 2018,870:90-96. doi: 10.1016/j.jorganchem.2018.06.023

    32. [32]

      Adam F I, Hogarth G, Richards I. Models of the Iron-Only Hydrogenase: Reactions of[Fe2(CO)6(μ-pdt)] with Small Bite-Angle Diphosphines Yielding Bridge and Chelate Diphosphine Complexes[Fe2(CO)4(diphosphine)(μ-pdt)][J]. J. Organomet. Chem., 2007,692(18):3957-3968. doi: 10.1016/j.jorganchem.2007.05.050

    33. [33]

      Liu X F, Ma Z Y, Jin B, Wang D, Zhao P H. Substituent Effects of Tertiary Phosphines on the Structures and Electrochemical Performances of Azadithiolato-Bridged Diiron Model Complexes of[FeFe]-Hydrogenases[J]. Appl. Organomet. Chem., 2022,36(7)e6751.

    34. [34]

      Si Y T, Charreteur K, Capon J, Gloaguen F, Pétillon F, Schollhammer P, Talarmin J. Non-innocent bma Ligand in a Dissymetrically Disubstituted Diiron Dithiolate Related to the Active Site of the[FeFe] Hydrogenases[J]. J. Inorg. Biochem., 2010,104(10):1038-1042. doi: 10.1016/j.jinorgbio.2010.05.011

    35. [35]

      Chong D, Georgakaki I P, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga M P, Darensbourg M Y. Electrocatalysis of Hydrogen Production by Active Site Analogs of the Iron Hydrogenase Enzyme: Structure/Function Relationships[J]. Dalton Trans., 2003:4158-4163.

    36. [36]

      Hu M Y, Zhao P H, Li J R, Gu X L, Jing X B, Liu X F. Synthesis, Structures, and Electrocatalytic Properties of Phosphine-Monodentate, -Chelate, and - Bridge Diiron 2, 2-Dimethylpropanedithiolate Complexes Related to[FeFe]-Hydrogenases[J]. Appl. Organomet. Chem., 2020,34(4)e5523.

    37. [37]

      Gloaguen F, Lawrence J D, Rauchfuss T B. Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate[J]. J. Am. Chem. Soc., 2001,123(38):9476-9477.

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    6. [6]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    7. [7]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    12. [12]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    13. [13]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    14. [14]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    15. [15]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    18. [18]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    19. [19]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    20. [20]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

Metrics
  • PDF Downloads(4)
  • Abstract views(307)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return