Citation: Si-Yu ZHU, Jie GAO, Xiao-Dong YAN, Zhi-Guo GU. Ionic Gels Based on Ionic Liquids and Diaryl Ethylene: Photochromic, Conductive, Self-Healing, and Flexible Sensing Properties[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2363-2371. doi: 10.11862/CJIC.2022.244 shu

Ionic Gels Based on Ionic Liquids and Diaryl Ethylene: Photochromic, Conductive, Self-Healing, and Flexible Sensing Properties

Figures(7)

  • It remains a challenge in the preparation of multifunctional conductive gels which combine self-healing and the ability to respond to complex environments. In this work, a new ionic self-healing gel DPZI with the properties of photochromic, conductive, self-adhesive, and wide temperature working range was prepared by polymerization of acrylic acid with the addition of 4, 4'-(perfluorocyclopentene-1, 2-diyl)bis(5-methylthiophene-2-carbaldehyde) (DEA) and 1-butyl-3-methylimidazolium tetrafluoroborate ((BMIm)BF4) ionic liquids. Owing to the high thermal stability and low vapor pressure of (BMIm)BF4, the obtained DPZI gel exhibited good mechanical properties in a wide temperature range from-20 to 40 ℃ and high ionic conductivity. The dynamic coordination bond formed by Zn2+ and—COO- introduced in the DPZI system enabled the gel to possess rapid self-healing ability and ultra-fast resistive response recovery in 0.06 s. The gel displayed excellent anti-freezing properties due to the combination of ionic liquids. DPZI exhibited a rapid reversible yellow-blue color transition within 10 s due to the isomerization of the photochromic unit DEA, and the open-loop form/closed-loop form isomerization of the photochromic unit also enabled the regulation of gel conductivity. Additionally, it showed good cycling stability with minor resistance fluctuations over 50 stretch-release cycles. Given its superior performance, the DPZI gel could effectively detect and distinguish human motions, such as the bending and stretching of a finger, knee, neck, or elbow joint, with a rapid and reliable signal response (strain sensitivity of 0.2%).
  • 加载中
    1. [1]

      Ying B B, Liu X Y. Skin-like Hydrogel Devices for Wearable Sensing, Soft Robotics and Beyond[J]. iScience, 2021,24(11)103174. doi: 10.1016/j.isci.2021.103174

    2. [2]

      Chun K Y, Seo S, Han C S. A Wearable All-Gel Multimodal Cutaneous Sensor Enabling Simultaneous Single-Site Monitoring of Cardiac-Related Biophysical Signals[J]. Adv. Mater., 2022,34(16)2110082. doi: 10.1002/adma.202110082

    3. [3]

      Handler A, Ginty D D. The Mechanosensory Neurons of Touch and Their Mechanisms of Activation[J]. Nat. Rev. Neurosci., 2021,22(9):521-537. doi: 10.1038/s41583-021-00489-x

    4. [4]

      Chun K Y, Son Y J, Seo S, Lee H J, Han C S. Nonlinearly Frequency-Adaptive, Self-Powered, Proton-Driven Somatosensor Inspired by a Human Mechanoreceptor[J]. ACS Sens., 2020,5(3):845-852. doi: 10.1021/acssensors.0c00119

    5. [5]

      Fu H C, Wang B, Li J P, Xu J, Li J, Zeng J S, Gao W H, Chen K F. Self-Healing, Recyclable and Conductive Gelatin/Nanofibrillated Cellulose/Fe3+ Hydrogels Based on Multi-dynamic Interactions for Multifunctional Strain Sensors[J]. Mater. Horiz., 2022,9(5):1412-1423. doi: 10.1039/D2MH00028H

    6. [6]

      Das S, Martin P, Vasilyev G, Nandi R, Amdursky N, Zussman E. Processable, Ion-Conducting Hydrogel for Flexible Electronic Devices with Self-Healing Capability[J]. Macromolecules, 2020,53(24):11130-11141. doi: 10.1021/acs.macromol.0c02060

    7. [7]

      Qin Y, Mo J L, Liu Y H, Zhang S, Wang J L, Fu Q, Wang S F, Nie S X. Stretchable Triboelectric Self-Powered Sweat Sensor Fabricated from Self-Healing Nanocellulose Hydrogels[J]. Adv. Funct. Mater., 2022,32(27)2201846. doi: 10.1002/adfm.202201846

    8. [8]

      Hou K X, Zhao S P, Wang D P, Zhao P C, Li C H, Zuo J L. A Puncture-Resistant and Self-Healing Conductive Gel for Multifunctional Electronic Skin[J]. Adv. Funct. Mater., 2021,31(49)2107006. doi: 10.1002/adfm.202107006

    9. [9]

      Su G H, Yin S Y, Guo Y, Zhao F, Guo Q Q, Zhang X X, Zhou T, Yu G H. Balancing the Mechanical, Electronic, and Self-Healing Properties in Conductive Self-Healing Hydrogel for Wearable Sensor Applications[J]. Mater. Horiz., 2021,8(6):1795-1804. doi: 10.1039/D1MH00085C

    10. [10]

      Xue B, Sheng H, Li Y Q, Li L, Di W S, Xu Z Y, Ma L J, Wang X, Jiang H T, Qin M, Yan Z B, Jiang Q, Liu J M, Wang W, Cao Y. Stretchable and Self-Healable Hydrogel Artificial Skin[J]. Natl. Sci. Rev., 2021,9(7)nwab147.

    11. [11]

      Zhang Z T, Wang W C, Jiang Y W, Wang Y X, Wu Y L, Lai J C, Niu S M, Xu C Y, Shih C C, Wang C, Yan H P, Galuska L, Prine N, Wu H C, Zhong D L, Chen G, Matsuhisa N, Zheng Y, Yu Z A, Wang Y, Dauskardt R, Gu X D, Tok J B H, Bao Z N. High-Brightness All-Polymer Stretchable LED with Charge-Trapping Dilution[J]. Nature, 2022,603:624-630. doi: 10.1038/s41586-022-04400-1

    12. [12]

      Jiang Y W, Zhang Z T, Wang Y X, Li D L, Coen C T, Hwaun E, Chen G, Wu H C, Zhong D L, Niu S M, Wang W C, Saberi A, Lai J C, Wu Y L, Wang Y, Trotsyuk A A, Loh K Y, Shih C C, Xu W H, Liang K, Zhang K L, Bai Y H, Gurusankar G, Hu W P, Jia W, Cheng Z, Dauskardt R H, Gurtner G C, Tok J B H, Deisseroth K, Soltesz I, Bao Z N. Topological Supramolecular Network Enabled High-Conductivity, Stretchable Organic Bioelectronics[J]. Science, 2022,375(6587):1411-1417. doi: 10.1126/science.abj7564

    13. [13]

      Shi X F, Lei Z Y, Wu P Y. An Intelligent Light-Managing Ionic Skin for UV-Protection, IR Stealth, and Optical Camouflaged Morse Codes[J]. Sci. China Mater., 2021,65(8):2281-2288.

    14. [14]

      Sun X, Yao M M, He S S, Dong X R, Liang L, Yao F L, Li J J. Antibacterial and UV-Blocking Bioelectronics Based on Transparent, Adhesive, and Strain-Sensitive Multifunctional Hydrogel[J]. Adv. Mater. Technol., 2021,7(7)2101283.

    15. [15]

      Qian Y, Zhou Y J, Lu M J, Guo X S, Yang D J, Lou H M, Qiu X Q, Guo C F. Direct Construction of Catechol Lignin for Engineering Long-Acting Conductive, Adhesive, and UV-Blocking Hydrogel Bioelectronics[J]. Small Methods, 2021,5(5)2001311. doi: 10.1002/smtd.202001311

    16. [16]

      Sun D, Li N, Rao J, Jia S Y, Su Z H, Hao X, Peng F. Ultrafast Fabrication of Organohydrogels with UV-Blocking, Anti-freezing, Antidrying, and Skin Epidermal Sensing Properties Using Lignin-Cu2+ Plant Catechol Chemistry[J]. J. Mater. Chem. A, 2021,9(25):14381-14391. doi: 10.1039/D1TA02139G

    17. [17]

      Yang J, Tang C, Sun H, Liu Z, Liu Z Z, Li K, Zhu L, Qin G, Sun G Z, Li Y L, Chen Q. Tough, Transparent, and Anti-freezing Nanocomposite Organohydrogels with Photochromic Properties[J]. ACS Appl. Mater. Interfaces, 2021,13(26):31180-31192. doi: 10.1021/acsami.1c07563

    18. [18]

      Shi H H, Wu S S, Si M Q, Wei S X, Lin G Q, Liu H, Xie W P, Lu W, Chen T. Cephalopod-Inspired Design of Photomechanically Modulated Display Systems for On-Demand Fluorescent Patterning[J]. Adv. Mater., 2022,34(4)2107452. doi: 10.1002/adma.202107452

    19. [19]

      Liu H, Wei S X, Qiu H Y, Si M Q, Lin G Q, Lei Z K, Lu W, Zhou L, Chen T. Supramolecular Hydrogel with Orthogonally Responsive R/ G/B Fluorophores Enables Multicolor Switchable Biomimetic Soft Skins[J]. Adv. Funct. Mater., 2021,32(9)2108830.

    20. [20]

      Chang M J, Liang D L, Zhou F, Xue H D, Zong H, Chen W N, Zhou G. Photochromic and Electrochromic Hydrogels Based on Ammonium-and Sulfonate-Functionalized Thienoviologen Derivatives[J]. ACS Appl. Mater. Interfaces, 2022,14(13):15448-15460. doi: 10.1021/acsami.1c24560

    21. [21]

      Fukushima T, Tamaki K, Isobe A, Hirose T, Shimizu N, Takagi H, Haruki R, Adachi S, Hollamby M J, Yagai S. Diarylethene-Powered Light-Induced Folding of Supramolecular Polymers[J]. J. Am. Chem. Soc., 2021,143(15):5845-5854. doi: 10.1021/jacs.1c00592

    22. [22]

      Koga H, Nogi M, Isogai A. Ionic Liquid Mediated Dispersion and Support of Functional Molecules on Cellulose Fibers for Stimuli-Responsive Chromic Paper Devices[J]. ACS Appl. Mater. Interfaces, 2017,9(46):40914-40920. doi: 10.1021/acsami.7b14827

    23. [23]

      Li Z Q, Chen H Z, Li B, Xie Y M, Gong X L, Liu X, Li H R, Zhao Y L. Photoresponsive Luminescent Polymeric Hydrogels for Reversible Information Encryption and Decryption[J]. Adv. Sci., 2019,6(21)1901529. doi: 10.1002/advs.201901529

    24. [24]

      Kim D, Jeong H, Jang Y, Hwang W T, Sysoiev D, Scheer E, Huhn T, Min M, Lee H, Lee T. Reversible Switching Phenomenon in Diarylethene Molecular Devices with Reduced Graphene Oxide Electrodes on Flexible Substrates[J]. Adv. Funct. Mater., 2015,25(37):5918-5923. doi: 10.1002/adfm.201502312

    25. [25]

      Nie H, Schauser N S, Self J L, Tabassum T, Oh S, Geng Z S, Jones S D, Zayas M S, Reynolds V G, Chabinyc M L, Hawker C J, Han S, Bates C M, Segalman R A, de Alaniz J R. Light-Switchable and Self-Healable Polymer Electrolytes Based on Dynamic Diarylethene and Metal-Ion Coordination[J]. J. Am. Chem. Soc., 2021,143(3):1562-1569. doi: 10.1021/jacs.0c11894

  • 加载中
    1. [1]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(3)
  • Abstract views(285)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return