Citation: Yun-Song XU, Zhong-Ping YAO, Tian-Qi ZHAO, Yan-Ran GU, Xiao ZHANG, Ping SONG. MXene/Dendritic Co/Polyvinylidene Fluoride Composite Photothermal Membrane: Preparation and Interfacial Evaporation Properties[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2423-2432. doi: 10.11862/CJIC.2022.243 shu

MXene/Dendritic Co/Polyvinylidene Fluoride Composite Photothermal Membrane: Preparation and Interfacial Evaporation Properties

  • Corresponding author: Zhong-Ping YAO, yaozhongping@hit.edu.cn
  • Received Date: 29 May 2022
    Revised Date: 7 October 2022

Figures(6)

  • In this work, Ti3 AlC2 was etched and exfoliated into few-layer of Ti3C2Tx MXene nanosheets using wet etching. Then, dendritic Co was prepared by electrochemical reduction, and afterwards Ti3C2Tx/dendritic Co/PVDF composite photothermal membrane was prepared by vacuum filtration utilizing hydrophilic polyvinylidene fluoride (PVDF) membrane as substrate. The structure and morphology of the composites were characterized, as well as the optical absorption and interfacial evaporation properties of the composite photothermal membrane were studied. The results displayed that under the simulated one solar light (the light intensity was 1 kW·m-2), the light absorptivity of Ti3C2Tx/dendritic Co/PVDF composite photothermal membrane was 95.3%, the evaporation rate of pure water reached 1.78 kg·m-2·h-1, and the efficiency of interface evaporation was as high as 97.5%. In addition, the performance of interfacial evaporation in simulated seawater was accordingly tested. The water obtained by evaporation and condensation meets the drinking water standards of World Health Organization (WHO) and U.S. Environmental Protection Agency (EPA), and the evaporation rate reached 1.61 kg·m-2·h-1, which was stable at 1.59 kg·m-2·h-1 after five cycles.
  • 加载中
    1. [1]

      Blanco J, Malato S, Fernandez-Ibanez P, Alarcon D, Gernjak W, Maldonado M L. Review of Feasible Solar Energy Applications to Water Processes[J]. Renew. Sust. Energ. Rev., 2009,13(6/7):1437-1445.

    2. [2]

      Dalvi V H, Panse S V, Joshi J B. Solar Thermal Technologies as a Bridge from Fossil Fuels to Renewables[J]. Nat. Clim. Chang., 2015,5(11):1007-1013. doi: 10.1038/nclimate2717

    3. [3]

      Liu G H, Xu J L, Wang K Y. Solar Water Evaporation by Black Photothermal Sheets[J]. Nano Energy, 2017,41:269-284. doi: 10.1016/j.nanoen.2017.09.005

    4. [4]

      Guo L P, Gong J, Song C Y, Zhao Y L, Tan B, Zhao Q, Jin S B. Donor-Acceptor Charge Migration System of Superhydrophilic Covalent Triazine Framework and Carbon Nanotube toward High Performance Solar Thermal Conversion[J]. ACS Energy Lett., 2020,5(4):1300-1306. doi: 10.1021/acsenergylett.0c00394

    5. [5]

      Kou H, Liu Z X, Zhu B, Macharia D K, Ahmed S, Wu B H, Zhu M F, Liu X G, Chen Z G. Recyclable CNT-Coupled Cotton Fabrics for Low-Cost and Efficient Desalination of Seawater under Sunlight[J]. Desalination, 2019,462:29-38. doi: 10.1016/j.desal.2019.04.005

    6. [6]

      Shao C X, Zhao Y, Qu L T. Tunable Graphene Systems for Water Desalination[J]. ChemNanoMat, 2020,6(7):1028-1048. doi: 10.1002/cnma.202000041

    7. [7]

      Zhou L, Tan Y L, Wang J Y, Xu W C, Yuan Y, Cai W S, Zhu S N, Zhu J. 3D Self-Assembly of Aluminium Nanoparticles for Plasmon-Enhanced Solar Desalination[J]. Nat. Photonics, 2016,10(6):393-398. doi: 10.1038/nphoton.2016.75

    8. [8]

      Zhang J, Yang Y W, Zhao J Q, Dai Z H, Liu W G, Chen C B, Gao S, Golosov D A, Zavadski S M, Melnikov S N. Shape Tailored Cu2ZnSnS4 Nanosheet Aggregates for High Efficiency Solar Desalination[J]. Mater. Res. Bull., 2019,118110529. doi: 10.1016/j.materresbull.2019.110529

    9. [9]

      Yin K, Yang S, Wu J R, Li Y J, Chu D K, He J, Duan J A. Femtosecond Laser Induced Robust Ti Foam Based Evaporator for Efficient Solar Desalination[J]. J. Mater. Chem. A, 2019,7(14):8361-8367. doi: 10.1039/C9TA00291J

    10. [10]

      Kim C, Ryu Y, Shin D, Urbas A M, Kim K. Efficient Solar Steam Generation by Using Metal-Versatile Hierarchical Nanostructures for Nickel and Gold with Aerogel Insulator[J]. Appl. Surf. Sci., 2020,517146177. doi: 10.1016/j.apsusc.2020.146177

    11. [11]

      Liu C, Wu S J, Yang Z F, Sun H X, Zhu Z Q, Liang W D, Li A. Mechanically Robust and Flame-Retardant Silicon Aerogel Elastomers for Thermal Insulation and Efficient Solar Steam Generation[J]. ACS Omega, 2020,5(15):8638-8646. doi: 10.1021/acsomega.0c00086

    12. [12]

      Chou S S, Kaehr B, Kim J, Foley B M, De M, Hopkins P E, Huang J X, Brinker C J, Dravid V P. Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents[J]. Angew. Chem. Int. Ed., 2013,52(15):4160-4164. doi: 10.1002/anie.201209229

    13. [13]

      Huang S L, Long Y J, Yi H, Yang Z Y, Pang L J, Jin Z Y, Liao Q F, Zhang L J, Zhang Y Y, Chen Y Z, Cui H Z, Lu J G, Peng X S. Multifunctional Molybdenum Oxide for Solar-Driven Water Evaporation and Charged Dyes Adsorption[J]. Appl. Surf. Sci., 2019,491:328-334. doi: 10.1016/j.apsusc.2019.06.155

    14. [14]

      Yao Z P, Yu K L, Pan M Y, Xu H B, Zhao T Q, Jiang Z H. A Mechanically Durable, Excellent Recyclable 3D Hierarchical Ni3S2@Ni Foam Photothermal Membrane[J]. Green Energy Environ., 2022,7(3):492-499. doi: 10.1016/j.gee.2020.10.010

    15. [15]

      Goel N, Taylor R A, Otanicar T. A Review of Nanofluid-Based Direct Absorption Solar Collectors: Design Considerations and Experiments with Hybrid PV/Thermal and Direct Steam Generation Collectors[J]. Renew. Energy, 2020,145:903-913. doi: 10.1016/j.renene.2019.06.097

    16. [16]

      He J X, Zhao G H, Mu P, Wei H J, Su Y N, Sun H X, Zhu Z Q, Liang W D, Li A. Scalable Fabrication of Monolithic Porous Foam Based on Cross-Linked Aromatic Polymers for Efficient Solar Steam Generation[J]. Sol. Energy Mater. Sol. Cells, 2019,201110111. doi: 10.1016/j.solmat.2019.110111

    17. [17]

      Wilson H M, Rahman S A R, Parab A E, Jha N. Ultra-Low Cost Cotton Based Solar Evaporation Device for Seawater Desalination and Waste Water Purification to Produce Drinkable Water[J]. Desalination, 2019,456:85-96. doi: 10.1016/j.desal.2019.01.017

    18. [18]

      Xia Z J, Yang H C, Chen Z W, Waldman R Z, Zhao Y S, Zhang C, Patel S N, Darling S B. Porphyrin Covalent Organic Framework (POF)-Based Interface Engineering for Solar Steam Generation[J]. Adv. Mater. Interfaces, 2019,6(11)1900254. doi: 10.1002/admi.201900254

    19. [19]

      Zhu L L, Ding T P, Gao M M, Peh C K N, Ho G W. Shape Conformal and Thermal Insulative Organic Solar Absorber Sponge for Photothermal Water Evaporation and Thermoelectric Power Generation[J]. Adv. Mater. Interfaces, 2019,9(22)1900250.

    20. [20]

      Xu D X, Li Z D, Li L S, Wang J. Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications[J]. Adv. Funct. Mater., 2020,30(47)2000712. doi: 10.1002/adfm.202000712

    21. [21]

      Lin H, Wang X G, Yu L D, Chen Y, Shi J L. Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion[J]. Nano Lett., 2017,17(1):384-391. doi: 10.1021/acs.nanolett.6b04339

    22. [22]

      Li R Y, Zhang L B, Shi L, Wang P. MXene Ti3C2: An Effective 2D Light-To-Heat Conversion Material[J]. ACS Nano, 2017,11(4):3752-3759. doi: 10.1021/acsnano.6b08415

    23. [23]

      Soundiraraju B, George B K. Two-Dimensional Titanium Nitride (Ti2N) MXene: Synthesis, Characterization, and Potential Application as Surface-Enhanced Raman Scattering Substrate[J]. ACS Nano, 2017,11(9):8892-8900. doi: 10.1021/acsnano.7b03129

    24. [24]

      Ju M M, Yang Y W, Zhao J Q, Yin X T, Wu Y T, Que W X. Macroporous 3D MXene Architecture for Solar-Driven Interfacial Water Evaporation[J]. J. Adv. Dielectr., 2020,9(6)1950047.

    25. [25]

      Zhao J Q, Yang Y W, Yang C H, Tian Y P, Han Y, Liu J, Yin X T, Que W X. A Hydrophobic Surface Enabled Salt-Blocking 2D Ti3C2 MXene Membrane for Efficient and Stable Solar Desalination[J]. J. Mater. Chem. A, 2018,6(33):16196-16204. doi: 10.1039/C8TA05569F

    26. [26]

      Zhao X, Zha X J, Tang L S, Pu J H, Ke K, Bao R Y, Liu Z Y, Yang M B, Yang W. Self-Assembled Core-Shell Polydopamine@MXene with Synergistic Solar Absorption Capability for Highly Efficient Solar-To-Vapor Generation[J]. Nano Res., 2019,13(1):255-264.

    27. [27]

      Zheng Z M, Li H Y, Zhang X D, Jiang H, Geng X M, Li S M, Tu H Y, Cheng X R, Yang P, Wan Y F. High-Absorption Solar Steam Device Comprising Au@Bi2MoO 6-CDs: Extraordinary Desalination and Electricity Generation[J]. Nano Energy, 2020,68104298. doi: 10.1016/j.nanoen.2019.104298

    28. [28]

      Xu R Q, Wei N, Li Z K, Song X J, Li Q, Sun K Y, Yang E, Gong L, Sui Y L, Tian J, Wang X, Zhao M G, Cui H Z. Construction of Hierarchical 2D/2D Ti3C2/MoS2 Nanocomposites for High-Efficiency Solar Steam Generation[J]. J. Colloid Interface Sci., 2021,584:125-133. doi: 10.1016/j.jcis.2020.09.052

    29. [29]

      Zhang B P, Gu Q F, Wang C, Gao Q L, Guo J X, Wong P W, Liu C T, Alicia K A. Self-Assembled Hydrophobic/Hydrophilic Porphyrin-Ti3C2Tx MXene Janus Membrane for Dual-Functional Enabled Photothermal Desalination[J]. ACS Appl. Mater. Interfaces, 2021,13(3):3762-3770. doi: 10.1021/acsami.0c16054

    30. [30]

      Shao B, Wang Y D, Wu X, Lu Y, Yang X F, Chen G Y, Owens G, Xu H L. Stackable Nickel-Cobalt@Polydopamine Nanosheet Based Photothermal Sponges for Highly Efficient Solar Steam Generation[J]. J. Mater. Chem. A, 2020,8(23):11665-11673. doi: 10.1039/D0TA03799K

    31. [31]

      Li Z L, Li Z, Chen L, Hu Y, Hu S S, Miao Z H, Sun Y, Besenbacher F, Yu M. Polyethylene Glycol-Modified Cobalt Sulfide Nanosheets for High-Performance Photothermal Conversion and Photoacoustic/ Magnetic Resonance Imaging[J]. Nano Res., 2018,11(5):2436-2449. doi: 10.1007/s12274-017-1865-z

    32. [32]

      Zhang Z R, Yao Z P, Li Y, Lu S T, Wu X H, Jiang Z H. Cation-Induced Ti3C2Tx MXene Hydrogel for Capacitive Energy Storage[J]. Chem. Eng. J., 2022,433134488. doi: 10.1016/j.cej.2021.134488

    33. [33]

      Li X J, Yao Z P, Wang J K, Li D Q, Yu K L, Jiang Z H. A Novel Flake-like Cu7S4 Solar Absorber for High-Performance Large-Scale Water Evaporation[J]. ACS Appl. Energ. Mater., 2019,2(7):5154-5161. doi: 10.1021/acsaem.9b00831

    34. [34]

      Li Z T, Wang C B, Lei T, Ma H L, Su J B, Ling S, Wang W. Arched Bamboo Charcoal as Interfacial Solar Steam Generation Integrative Device with Enhanced Water Purification Capacity[J]. Adv. Sustain. Syst., 2019,3(4)1800144. doi: 10.1002/adsu.201800144

    35. [35]

      Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G. Solar Steam Generation by Heat Localization[J]. Nat. Commun., 2014,54449. doi: 10.1038/ncomms5449

    36. [36]

      Li Z H, Liu J J, Zhao Y F, Waterhouse G I N, Chen G B, Shi R, Zhang X, Liu X W, Wei Y M, Wen X D. Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins[J]. Adv. Mater., 2018,30(31)1800527. doi: 10.1002/adma.201800527

    37. [37]

      Wang P F, Gu Y F, Miao L, Zhou J H, Su H, Wei A Y, Mu X J, Tian Y Z, Shi J Q, Cai H F. Co3O4 Nanoforest/Ni Foam as the Interface Heating Sheet for the Efficient Solar-Driven Water Evaporation under One Sun[J]. Sustain. Mater. Technol., 2019,20e00106.

    38. [38]

      Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes)[J]. Science, 2016,353(6304):1137-1140. doi: 10.1126/science.aag2421

    39. [39]

      Chaudhuri K, Alhabeb M, Wang Z X, Shalaev V M, Gogotsi Y, Boltasseva A. Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene)[J]. ACS Photonics, 2018,5(3):1115-1122. doi: 10.1021/acsphotonics.7b01439

    40. [40]

      Yu K, Tan X, Hu Y A, Chen F W, Li S J. Microstructure Effects on The Electrochemical Corrosion Properties of Mg-4.1% Ga-2.2% Hg Alloy as the Anode for Seawater-Activated Batteries[J]. Corrosion Sci., 2011,53(5):2035-2040. doi: 10.1016/j.corsci.2011.01.040

    41. [41]

      Smith A H, Lopipero P A, Bates M N, Steinmaus C M. Arsenic Epidemiology and Drinking Water Standards[J]. Science, 2002,296(5576):2145-2146. doi: 10.1126/science.1072896

    42. [42]

      Zhou X Y, Guo Y H, Zhao F, Yu G H. Hydrogels as an Emerging Material Platform for Solar Water Purification[J]. Acc. Chem. Res., 2019,52(11):3244-3253. doi: 10.1021/acs.accounts.9b00455

    43. [43]

      Fan D Q, Lu Y, Zhang H, Xu H L, Lu C H, Tang Y C, Yang X F. Synergy of Photocatalysis and Photothermal Effect in Integrated 0D Perovskite Oxide/2D MXene Heterostructures for Simultaneous Water Purification and Solar Steam Generation[J]. Appl. Catal. B-Environ., 2021,295120285. doi: 10.1016/j.apcatb.2021.120285

    44. [44]

      Lu Y, Fan D Q, Wang Y D, Xu H L, Lu C H, Yang X F. Surface Patterning of Two-Dimensional Nanostructure-Embedded Photothermal Hydrogels for High-Yield Solar Steam Generation[J]. ACS Nano, 2021,15(6):10366-10376. doi: 10.1021/acsnano.1c02578

    45. [45]

      Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. Flexible Anti-Biofouling MXene/Cellulose Fibrous Membrane for Sustainable Solar-Driven Water Purification[J]. ACS Appl. Mater. Interfaces, 2019,11(40):36589-36597. doi: 10.1021/acsami.9b10606

    46. [46]

      Zhao X, Zha X J, Pu J H, Bai L, Bao R Y, Liu Z Y, Yang M B, Yang W. Macroporous Three-Dimensional MXene Architectures for Highly Efficient Solar Steam Generation[J]. J. Mater. Chem. A, 2019,7(11):10446-10455.

    47. [47]

      Zhang Q, Yi G, Fu Z, Yu H T, Chen S, Quan X. Vertically Aligned Janus MXene-Based Aerogels for Solar Desalination with High Efficiency and Salt Resistance[J]. ACS Nano, 2019,13(11):13196-13207. doi: 10.1021/acsnano.9b06180

    48. [48]

      ZHANG K, HU K. Preparation and Photothermal Evaporation Performance of Janus PVDF/Graphene/Polydopamine Composite Membranes[J]. Plastics Science and Technology, 2021,49(9):29-32.  

    49. [49]

      Zhang B P, Wong P W, An A K. Photothermally Enabled MXene Hydrogel Membrane with Integrated Solar-Driven Evaporation and Photodegradation for Efficient Water Purification[J]. Chem. Eng. J., 2022,430133054. doi: 10.1016/j.cej.2021.133054

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    6. [6]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    7. [7]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    16. [16]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    17. [17]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    18. [18]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    19. [19]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    20. [20]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

Metrics
  • PDF Downloads(6)
  • Abstract views(465)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return