Citation: Zhi-Kang JIN, Tong WEI, Chao XU, Hong-Bo JIA, Jun-Jie SONG, Hong-Liang ZHU, Xiang-Bo-Wen DU, Zheng-Xin PENG, Gang WANG, Jun LIU, Hong-Yun DING, Fan HE, Min WANG, Ren-Hong LI. Synthesis of Nanocrystalline Cobalt Boride for Efficient Catalytic Hydrogen Production via Ammonia Borane Hydrolysis[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2392-2400. doi: 10.11862/CJIC.2022.242 shu

Synthesis of Nanocrystalline Cobalt Boride for Efficient Catalytic Hydrogen Production via Ammonia Borane Hydrolysis

  • Corresponding author: Ren-Hong LI, lirenhong@zstu.edu.cn
  • Received Date: 23 May 2022
    Revised Date: 11 October 2022

Figures(8)

  • In this paper, a simple calcination process was used to synthesize nanocrystalline cobalt boride (CoB), which was employed to catalyze the hydrolysis of ammonia borane solution at room temperature. Specifically, it was found that the CoB exhibited high performance with a turnover frequency (TOF) of 35.3 molH2·molcat-1·min-1, which is superior to platinum (TOF=29.3 molH2·molcat-1·min-1). It still possessed excellent catalytic hydrogen production performance after repeated testing for 8 times. We found that Co0 species on the surface of CoB is a possible catalytic active site, and the boron site on the surface can effectively assist the Co0 site to achieve the synergistic catalytic hydrogen production from ammonia borane.
  • 加载中
    1. [1]

      Qiang X, Chandra M. Catalytic Activities of Non-noble Metals for Hydrogen Generation from Aqueous Ammonia-Borane at Room Temperature[J]. J. Power Sources, 2006,163(1):364-37. doi: 10.1016/j.jpowsour.2006.09.043

    2. [2]

      Zhou Q X, Xu C X. Stratified Nanoporous PtTi Alloys for Hydrolysis of Ammonia Borane[J]. J. Colloid Interface Sci., 2017,496:235-242. doi: 10.1016/j.jcis.2017.02.030

    3. [3]

      Ozhava D, Ozkar S. Nanoceria Supported Rhodium(0) Nanoparticles as Catalyst for Hydrogen Generation from Methanolysis of Ammonia Borane[J]. Appl. Catal. B-Environ., 2018,237:1012-1020. doi: 10.1016/j.apcatb.2018.06.064

    4. [4]

      Tunç N, Rakap M. Preparation and Characterization of Ni-M (M: Ru, Rh, Pd) Nanoclusters as Efficient Catalysts for Hydrogen Evolution from Ammonia Borane Methanolysis[J]. Renewable Energy, 2020,155:1222-1230. doi: 10.1016/j.renene.2020.04.079

    5. [5]

      Alpaydın C Y, Gülbay S K, Colpan O C. A Review on the Catalysts Used for Hydrogen Production from Ammonia Borane[J]. Int. J. Hydrog. Energy, 2020,45(5):3414-3434. doi: 10.1016/j.ijhydene.2019.02.181

    6. [6]

      Kang Y Q, Jiang B, Yang J J, Wan Z, Jongbeom N, Li Q, Li H X, Joel H, Yoshio S, Yusuke Y, Toru A. Amorphous Alloy Architectures in Pore Walls: Mesoporous Amorphous NiCoB Alloy Spheres with Controlled Compositions via a Chemical Reduction[J]. ACS Nano, 2020,14(12):17224-17232. doi: 10.1021/acsnano.0c07178

    7. [7]

      Yang X, Li Q L, Li L L, Yang X J, Yu C, Liu Z Y, Fang Y, Huang Y, Tang C C. CuCo Binary Metal Nanoparticles Supported on Boron Nitride Nanofibers as Highly Efficient Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane[J]. J. Power Sources, 2019,431(15):135-143.

    8. [8]

      Lu D S, Li J H, Lin C H, Liao J Y, Feng Y F, Ding Z T, Li Z W, Liu Q B, Li H. A Simple and Scalable Route to Synthesize CoxCu1-xCo2O4@CoyCu1-yCo2O4 Yolk-Shell Microspheres, a High-Performance Catalyst to Hydrolyze Ammonia Borane for Hydrogen Production[J]. Small, 2019,15(10)1805460. doi: 10.1002/smll.201805460

    9. [9]

      Saad A, Gao Y, Owusu K A, Liu W, Wu Y, Ramiere A, Guo H, Tsiakaras P, Cai X. Ternary Mo2NiB2 as a Superior Bifunctional Electrocatalyst for Overall Water Splitting[J]. Small, 2022,18(6)2104303. doi: 10.1002/smll.202104303

    10. [10]

      Fu Z C, Xu Y, Chan L F, Sharon L, Wang W W, Li F, Liang F, Chen Y, Lin Z S, Fu W F, Che C M. Highly Efficient Hydrolysis of Ammonia Borane by Anion (OH-, F-, Cl-)-Tuned Interactions between Reactant Molecules and CoP Nanoparticles[J]. Chem. Commun., 2017,53(4):705-708. doi: 10.1039/C6CC08120G

    11. [11]

      Wang C, Tuninetti J, Wang Z, Zhang C, Roberto C, Lionel S, Sergio M, Jaime R, Didier A. Hydrolysis of Ammonia-Borane over Ni/ZIF-8 Nano Catalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release[J]. J. Am. Chem. Soc., 2017,139(33):11610-11615. doi: 10.1021/jacs.7b06859

    12. [12]

      Chandra M, Qiang X. Dissociation and Hydrolysis of Ammonia-Borane with Solid Acids and Carbon Dioxide: An Efficient Hydrogen Generation System[J]. J. Power Sources, 2006,159(2):855-860. doi: 10.1016/j.jpowsour.2005.12.033

    13. [13]

      Yang J, Cheng F Y, Jing L, Chen J. Hydrogen Generation by Hydrolysis of Ammonia Borane with a Nanoporous Cobalt-Tungsten-Boron-Phosphorus Catalyst Supported on Ni Foam[J]. Int. J. Hydrog. Energy, 2011,36(2):1411-1417. doi: 10.1016/j.ijhydene.2010.10.066

    14. [14]

      Li P, Huang Y Q, Huang Q H, Chen R, Li J X, Tian S H. Cobalt Phosphide with Porous Multishelled Hollow Structure Design Realizing Promoted Ammonia Borane Dehydrogenation: Elucidating Roles of Architectural and Electronic Effect[J]. Appl. Catal. B-Environ., 2022,313:12144-12155.

    15. [15]

      Tong D G, Zeng X L, Chu W, Wang D, Wu P. Magnetically Recyclable Hollow Co-B Nanospindles as Catalysts for Hydrogen Generation from Ammonia Borane[J]. J. Mater. Sci., 2010,45(11):2862-2867. doi: 10.1007/s10853-010-4275-0

    16. [16]

      Yang Y, Zhang F, Wang H, Yao Q L, Chen X S, Lu Z H. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation[J]. J. Nanomater., 2014:1-9.

    17. [17]

      Lan Y, Nan C, Cheng D, Dai H M, Hu K, Luo W, Cheng G Z. Graphene Supported Cobalt(0) Nanoparticles for Hydrolysis of Ammonia Borane[J]. Mater. Lett., 2014,115(15):113-116.

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    13. [13]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(14)
  • Abstract views(857)
  • HTML views(238)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return