Citation: Ji-Jiang WANG, Lao-Bang WANG, Er-Lin YUE, Jin-Feng LI, Chao BAI, Long TANG, Xiao WANG, Xiang-Yang HOU, Yu-Qi ZHANG. A Highly Stable Cd(Ⅱ) Coordination Polymer for Detection of Roxithromycin and B4O72-[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2491-2498. doi: 10.11862/CJIC.2022.239 shu

A Highly Stable Cd(Ⅱ) Coordination Polymer for Detection of Roxithromycin and B4O72-

  • Corresponding author: Ji-Jiang WANG, yadxwjj@126.com
  • Received Date: 1 May 2022
    Revised Date: 21 September 2022

Figures(3)

  • A stable coordination polymer, [Cd2(L) (bpb) (H2O)4] ·0.5H4L (1) (H4L=1, 1'-ethylbiphenyl-3, 3', 5, 5'-tetracarboxylic acid, bpb=1, 4-di(pyridin-4-yl) benzene), were successfully constructed under solvothermal conditions. 1 exhibited excellent stability in different organic solvents and water. 1 could detect roxithromycin (ROX) and B4O72- in water by fluorescence quenching, and the detection limits were 0.21 and 1.59 μmol·L-1, respectively. 1 could be successfully used for the determination of ROX and B4O72- in Yanhe River water. Moreover, the possible sensing mechanisms are also discussed in detail.
  • 加载中
    1. [1]

      Zhang X, Gu S Q, Ding Y. Simultaneous Detection of Roxithromycin and Dopamine Using a Sensor Platform Based on Poly(sulfosalicylic acid) and Its Application in Human Serum Studies[J]. Anal. Methods, 2014,6:3316-3321. doi: 10.1039/C4AY00009A

    2. [2]

      García-Mayor M A, Gallego-Picó A, Garcinuño R M, Fernández-Hernando P, Durand-Alegría J S. Matrix Solid-Phase Dispersion Method for the Determination of Macrolide Antibiotics in Sheep's Milk[J]. Food Chem., 2012,34:553-558.

    3. [3]

      Fail P A, Chapin P E, Price C J. General, Reproductive, Developmental, and Endocrine Toxicity of Boronated Compounds[J]. Reprod. Toxico., 1998,12:1-18. doi: 10.1016/S0890-6238(97)00095-6

    4. [4]

      Pongsavee M. Effect of Borax on Immune Cell Proliferation and Sister Chromatid Exchange in Human Chromosomes[J]. J. Occup. Med. Toxicol., 2009,427. doi: 10.1186/1745-6673-4-27

    5. [5]

      Rowsell J L, Yaghi O M. Metal-Organic Frameworks: A New Class of Porous Materials[J]. Microporous Mesoporous Mater., 2004,73:3-14. doi: 10.1016/j.micromeso.2004.03.034

    6. [6]

      Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. The Chemistry and Applications of Metal-Organic Frameworks[J]. Science, 2013,3411230444. doi: 10.1126/science.1230444

    7. [7]

      Meek S T, Greathouse J A, Allendorf M D. Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials[J]. Adv. Mater., 2011,23:249-267. doi: 10.1002/adma.201002854

    8. [8]

      Cui Y J, Li B, He H J, Zhou W, Chen B L, Qian G D. Metal-Organic Frameworks as Platforms for Functional Materials[J]. Acc. Chem. Res., 2016,49:483-493. doi: 10.1021/acs.accounts.5b00530

    9. [9]

      Abednatanzi S, Derakhshandeh P G, Depauw H, Coudert F X, Vrielinck H, Leus K. Mixed-Metal Metal-Organic Frameworks[J]. Chem. Soc. Rev., 2019,48:2535-2565. doi: 10.1039/C8CS00337H

    10. [10]

      Lu W G, Wei Z W, Gu Z Y, Liu T F, Park J, Tian J, Zhang M W, Zhang Q, Gentle T, Bosch M, Zhou H C. Tuning the Structure and Function of Metal-Organic Frameworks via Linker Design[J]. Chem. Soc. Rev., 2014,43:5561-5593. doi: 10.1039/C4CS00003J

    11. [11]

      Zhou H C, Kitagawa S. Metal-Organic Frameworks (MOFs)[J]. Chem. Soc. Rev., 2017,43:5415-5418.

    12. [12]

      Lin C H, Zou Z F, Lei Z W, Wang L, Song Y H. Fluorescent Metal-Organic Frameworks MIL-101(Al)-NH2 for Rapid and Sensitive Detection of Ellagic Acid[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2020,242118739. doi: 10.1016/j.saa.2020.118739

    13. [13]

      Wang F, Tian F K, Deng Y X, Yang L L, Zhang H H, Zhao D S, Li B, Zhang X T, Fan L M. Cluster-Based Multifunctional Copper (Ⅱ) Organic Framework as a Photocatalyst in the Degradation of Organic Dye and as an Electrocatalyst for Overall Water Splitting[J]. Cryst. Growth Des., 2021,21:4242-4248. doi: 10.1021/acs.cgd.1c00479

    14. [14]

      Fan L M, Wang F, Zhao D S, Peng Y X, Deng Y X, Luo Y W, Zhang X T. A Self-Penetrating and Chemically Stable Zinc (Ⅱ)-Organic Framework as Multi-responsive Chemo-Sensor to Detect Pesticide and Antibiotics in Water[J]. Appl. Organomet. Chem., 2020,345960.

    15. [15]

      Deng C L, Sun C F, Wang Z, Tao Y W, Chen Y L, Lin J Q, Luo G G, Lin B Z, Sun D, Zheng L S. Sodalite-Type Silver Orthophosphate Cluster in a Globular Silver Nanocluster[J]. Angew. Chem. Int. Ed., 2020,59:12659-12663. doi: 10.1002/anie.202003143

    16. [16]

      Zheng B S, Huang L, Gao X Y, Shen S S, Cao H F, Hang C, Zeng W J, Wang Z X. A Highly Porous Acylamide Decorated MOF-505 Analogue Exhibiting High and Selective CO2 Gas Uptake Capability[J]. CrystEngComm, 2018,20:1874-1881. doi: 10.1039/C8CE00103K

    17. [17]

      Liu S, Bai J L, Huo Y P, Ning B A, Peng Y, Li S, Han D P, Kang W J, Gao Z X. A Zirconium-Porphyrin MOF-Based Ratiometric Fluorescent Biosensor for Rapid and Ultrasensitive Detection of Chloramphenicol[J]. Biosens. Bioelectron., 2020,149111801. doi: 10.1016/j.bios.2019.111801

    18. [18]

      Xu Y X, Li Q, Xue H G, Pang H. Metal-Organic Frameworks for Direct Electrochemical Applications[J]. Coord. Chem. Rev., 2018,376:292-318. doi: 10.1016/j.ccr.2018.08.010

    19. [19]

      Wang X Q, Feng D D, Tang J, Zhao Y D, Li J, Yang J, Kim C K, Su F. A Water-Stable Zinc(Ⅱ)-Organic Framework as a Multiresponsive Luminescent Sensor for Toxic Heavy Metal Cations, Oxyanions and Organochlorine Pesticides in Aqueous Solution[J]. Dalton Trans., 2019,48:16776-16785. doi: 10.1039/C9DT03195B

    20. [20]

      Wang L, Yao Z Q, Ren G L, Han S Q, Hu T L, Bu X H. A Luminescent Metal-Organic Framework for Selective Sensing of Fe3+ with Excellent Recyclability[J]. Inorg. Chem. Commun., 2016,65:9-12. doi: 10.1016/j.inoche.2016.01.004

    21. [21]

      Qin B W, Zhang X Y, Zhang J P. A New Multifunctional Zinc-Organic Framework with Rare Interpenetrated Tripillared-Bilayers as a Luminescent Probe for Detecting Ni2+ and PO43- in Water[J]. Cryst. Growth Des., 2020,20:5120-5128. doi: 10.1021/acs.cgd.0c00308

    22. [22]

      Han M L, Wen G X, Dong W W, Zhou Z H, Wu Y P, Zhao J, Li D S, Ma L F, Bu X H. A Heterometallic Sodium-Europium-Cluster-Based Metal-Organic Framework as a Versatile and Water-Stable Chemosensor for Antibiotics and Explosives[J]. J. Mater. Chem. C, 2017,5:8469-8474. doi: 10.1039/C7TC02885G

    23. [23]

      Sheldrick G M. SHELXL-2014, Program for the Crystal Structure Refinement. University of Göttingen, Germany, 2014.

    24. [24]

      Sheldrick G M. SHELXS-2014, Program for the Crystal Structure Solution. University of Göttingen, Germany, 2014.

    25. [25]

      Gogia A, Mandal S K. A Rational Design and Green Synthesis of 3D Metal Organic Frameworks Containing a Rigid Heterocyclic Nitrogen-Rich Dicarboxylate: Structural Diversity, CO2 Sorption and Selective Sensing of 2, 4, 6-TNP in Water[J]. Dalton Trans., 2019,48:2388-2398. doi: 10.1039/C8DT04474K

    26. [26]

      Liu T Y, Qu X L, Zhang Y, Yan B. A Stable Cd (Ⅱ)-Based Metal-Organic Framework: Synthesis, Structure, and Its Eu3+ Functionalization for Ratiometric Sensing on the Biomarker 2-(2-Methoxyethoxy) Acetic Acid[J]. Inorg. Chem., 2021,60:8613-8620. doi: 10.1021/acs.inorgchem.1c00589

    27. [27]

      Gao R C, Guo F S, Bai N N, Wu Y L, Yang F, Liang J Y, Li Z J, Wang Y Y. Two 3D Isostructural Ln(Ⅲ)-MOFs: Displaying the Slow Magnetic Relaxation and Luminescence Properties in Detection of Nitrobenzene and Cr2O72-[J]. Inorg. Chem., 2016,55:11323-11330. doi: 10.1021/acs.inorgchem.6b01899

    28. [28]

      Xu H, Cao C S, Zhao B A. A Water-Stable Lanthanide-Organic Framework as a Recyclable Luminescent Probe for Detecting Pollutant Phosphorus Anions[J]. Chem. Commun., 2015,51:10280-10283. doi: 10.1039/C5CC02596F

    29. [29]

      Qu K G, Wang J S, Ren J S, Qu X G. Carbon Dots Prepared by Hydrothermal Treatment of Dopamine as an Effective Fluorescent Sensing Platform for the Label-Free Detection of Iron (Ⅲ) Ions and Dopamine[J]. Chem. Eur. J., 2019,19:7243-7249.

    30. [30]

      Yu M K, Xie Y, Wang X Y, Li Y X, Li G M. Highly Water-Stable Dye@Ln-MOFs for Sensitive and Selective Detection toward Antibiotics in Water[J]. ACS Appl. Mater. Interfaces, 2019,11:21201-21210. doi: 10.1021/acsami.9b05815

    31. [31]

      Fan C B, Zhang X, Li N N, Xu C G, Wu R X, Zhu B, Zhang G L, Bi S Y, Fan Y H. Zn-MOFs Based Luminescent Sensors for Selective and Highly Sensitive Detection of Fe3+ and Tetracycline Antibiotic[J]. J. Pharmaceut. Biomed., 2020,188113444. doi: 10.1016/j.jpba.2020.113444

    32. [32]

      Qin G X, Wang J, Li L, Yuan F F, Zha Q Q, Bai W B, Ni Y H. Highly Water-Stable Cd-MOF/Tb3+ Ultrathin Fluorescence Nanosheets for Ultrasensitive and Selective Detection of Cefixime[J]. Talanta, 2021,221121421. doi: 10.1016/j.talanta.2020.121421

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    3. [3]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    6. [6]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    7. [7]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    12. [12]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    13. [13]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    14. [14]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    15. [15]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    16. [16]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    17. [17]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    18. [18]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    19. [19]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    20. [20]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

Metrics
  • PDF Downloads(7)
  • Abstract views(382)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return