Citation: Xiao-Qin WEI, Zhuan GAO, Fan REN, Xiao-You CUI, Yue ZHOU, Dong SHAO. A Halogen Hydrogen-Bonded Fe(Ⅲ) Complex Showing Hysteretic Spin-Crossover Behavior above Room Temperature[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2283-2290. doi: 10.11862/CJIC.2022.235 shu

A Halogen Hydrogen-Bonded Fe(Ⅲ) Complex Showing Hysteretic Spin-Crossover Behavior above Room Temperature

  • Corresponding author: Dong SHAO, shaodong@nju.edu.cn
  • Received Date: 6 April 2022
    Revised Date: 19 September 2022

Figures(7)

  • A mononuclear Fe(Ⅲ) complex, [Fe(bzimpy-1H)2]Cl (1) was prepared by the reaction of a tridentate ligand 2, 6-bis(benzimidazol-2-yl)pyridine (bzimpy), where bzimpy-1H is the product of bzimpy after removing one proton, and its structure and magnetic properties were characterized in detail. The single crystal structure analysis shows that the Fe3+ center features a rare distorted octahedral N6 coordination environment for the complex, and the 3D supramolecular structure is constructed by N—H⋯Cl hydrogen bonding between the adjacent cation complex units and counterbalance chloride ions. The complex showed hysteretic spin-crossover (SCO) behavior above room temperature as evidenced by combined magnetic investigations and differential scanning calorimetry measurements (T1/2↑=345 K, T1/2 ↓=330 K). In addition, the light-induced excited spin state trapping (LIESST) effect was also observed in the complex. The magnetism-structure relationship shows that the N—H⋯Cl hydrogen bonding plays an important role in the bistable SCO behavior of the complex.
  • 加载中
    1. [1]

      Halcrow M A. Spin Crossover Materials: Properties and Applications. New York: Wiley, 2013.

    2. [2]

      Ruben M, Kuppusamy S K. Sublimable Spin-Crossover Complexes: From Spin-State Switching to Molecular Devices[J]. Angew. Chem. Int. Ed., 2021,60(14):7502-7521. doi: 10.1002/anie.201911256

    3. [3]

      Sato O, Tao J, Zhang Y Z. Control of Magnetic Properties through External Stimuli[J]. Angew. Chem. Int. Ed., 2007,46(13):2152-2187. doi: 10.1002/anie.200602205

    4. [4]

      Halcrow M A. Structure: Function Relationships in Molecular Spin-Crossover Complexes[J]. Chem. Soc. Rev., 2011,40(7):4119-4142. doi: 10.1039/c1cs15046d

    5. [5]

      Shao D, Shi L, Shen F X, Wei X Q, Sato O, Wang X Y. Reversible On-Off Switching of the Hysteretic Spin Crossover in a Cobalt(Ⅱ) Complex via Crystal to Crystal Transformation[J]. Inorg. Chem., 2019,58(17):11589-11598. doi: 10.1021/acs.inorgchem.9b01436

    6. [6]

      Zhao X H, Shao D, Chen J T, Gan D X, Yang J, Zhang Y Z. A Trinuclear {Fe2Fe} Complex Involving Both Spin and Non-spin Transitions Exhibits Three-Step and Wide Thermal Hysteresis[J]. Sci. China Chem., 2022,65(3):532-538. doi: 10.1007/s11426-021-1153-0

    7. [7]

      Shen K Y, Zhang C J, Qu L Y, Jiang S Q, Zhang Y, Tong M L, Bao X. Thermodriven, Acidity-Driven, and Photo-Driven Spin-State Switching in Pyridylacylhydrazoneiron(Ⅱ) Complexes at or above Room Temperature[J]. Inorg. Chem., 2021,60(23):18225-18233. doi: 10.1021/acs.inorgchem.1c02866

    8. [8]

      Wang L F, Lv B H, Wu F T, Huang G Z, Ruan Z Y, Chen Y C, Liu M, Ni Z P, Tong M L. Reversible On-Off Switching of Spin-Crossover Behavior via Photochemical[2+2] Cycloaddition Reaction[J]. Sci. China Chem., 2022,65(1):120-127. doi: 10.1007/s11426-021-1093-2

    9. [9]

      Craze A R, Zenno H, Pfrunder M C, McMurtrie J C., Hayami S, Clegg J K, Li F. Supramolecular Modulation of Spin Crossover in an Fe(Ⅱ) Dinuclear Triple Helicate[J]. norg. Chem., 2021,60(9):6731-6738.

    10. [10]

      Shen F X, Pi Q, Le S, Shao D, Li H Q, Sun Y C. Spin Crossover in Hydrogen-Bonded Frameworks of Fe Complexes with Organodisulfonate Anions[J]. Dalton Trans., 2019,48(24):8815-8825. doi: 10.1039/C9DT01326A

    11. [11]

      Zhao X H, Zhang S L, Shao D, Wang X Y. Spin Crossover in[Fe(2-picolylamine)3]2+ Adjusted by Organosulfonate Anions[J]. Inorg. Chem., 2015,54(16):7857-7867. doi: 10.1021/acs.inorgchem.5b00870

    12. [12]

      Zhang S L, Zhao X H, Wang Y M, Shao D, Wang X Y. Spin Crossover Behaviour in One-Dimensional Fe Compounds Based on the[M(CN)4]2- (M=Pd, Pt) Units[J]. Dalton Trans., 2015,44(20):9682-9690. doi: 10.1039/C5DT00836K

    13. [13]

      Harding D J, Harding P, Phonsri W. Spin Crossover in Iron(Ⅲ) Complexes[J]. Coord. Chem. Rev., 2016,313:38-61. doi: 10.1016/j.ccr.2016.01.006

    14. [14]

      Nakaya M, Ohtani R, Lindoy L F, Hayami S. Light-Induced Excited Spin State Trapping in Iron(Ⅲ) Complexes[J]. Inorg. Chem. Front., 2021,8(2):484-498. doi: 10.1039/D0QI01188F

    15. [15]

      WANG K J, LI H Q, SUN Y C, WANG X Y. Synthesis and Properties of an Iron Spin Crossover Compound with 1D Chains Bridged by Hydrogen Bonds[J]. Chinese J. Inorg. Chem., 2020,36(6):1143-1148.  

    16. [16]

      Boca M, Jameson R F, Linert W. Fascinating Variability in the Chemistry and Properties of 2, 6-Bis-(benzimidazol-2-yl)-pyridine and 2, 6-Bis-(benzthiazol-2-yl)-pyridine and Their Complexes[J]. Coord. Chem. Rev., 2011,255(1/2):290-317.

    17. [17]

      Ruttimann S, Moreau C M, Williams A F, Bernardinelli G, Addison A W. Complexes of Structural Analogs of Terpyridyl with Iron and Zinc—The X-ray Crystal Structure of Bis[2, 6-bis(benzimidazol-2-yl) pyridine]iron (Ⅱ) Trifluoromethylsulfonate Bis-ethanol Solvate[J]. Polyhedron, 1992,11(6):635-646. doi: 10.1016/S0277-5387(00)83320-3

    18. [18]

      Boca R, Baran P, Dlhifi L, Fuess H, Haase W, Renz F, Linert W, Svoboda I, Wemer R. Crystal Structure and Spin Crossover Studies on Bis(2, 6-bis(benzimidazol-2-yl)pyridine) Iron(Ⅱ) Perchlorate[J]. Inorg. Chim. Acta, 1997,260(2):129-136. doi: 10.1016/S0020-1693(96)05550-8

    19. [19]

      Boca R, Baran P, Boca M, Fuess H, Haase W, Linert W, Papfinkovz B, Werner R. Spin Crossover in Bis(2, 6-bis(benzimidazol-2-yl)pyridine) Iron(Ⅱ) Tetraphenylborate[J]. Inorg. Chim. Acta, 1998,278(2):190-196. doi: 10.1016/S0020-1693(98)00023-1

    20. [20]

      Boca R, Boca M, Dlhan L, Falk K, Fuess H, Haase W, Jaroščiak R, Papánková B, Renz F, Vrbová M, Werner R. Strong Cooperativeness in the Mononuclear Iron(Ⅱ) Derivative Exhibiting an Abrupt Spin Transition above 400 K[J]. Inorg. Chem., 2001,40(13):3025-3033. doi: 10.1021/ic000807s

    21. [21]

      Boca R, Renz F, Boca M, Fuess H, Haase W, Kicklbick G, Linert W, Vrbova-Schikora M. Tuning the Spin Crossover Above Room Temperature: Iron(Ⅱ) Complexes of Substituted and Deprotonated 2, 6-Bis (benzimidazol-2-yl)pyridine[J]. Inorg. Chem. Commun., 2005,8(2):227-230. doi: 10.1016/j.inoche.2004.12.014

    22. [22]

      Sheldrick G M. SHELXTL, Version 6.14. Bruker AXS, Inc., Madison, WI, 2000-2003.

    23. [23]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    24. [24]

      Llunell M, Casanova D, Cirera J, Alemany P, Alvarez S. SHAPE, Version 2.1. University of Barcelona, 2013.

    25. [25]

      Ketkaew R, Tantirungrotechai Y, Harding P, Chastanet G, Guionneau P, Marchivie M, Harding D J. OctaDist: A Tool for Calculating Distortion Parameters in Spin Crossover and Coordination Complexes[J]. Dalton Trans., 2021,50(3):1086-1096. doi: 10.1039/D0DT03988H

    26. [26]

      Martin J P, Zarembowitch J, Bousseksou A, Dworkin A, Haasnoot J G, Varret F. Solid State Effects on Spin Transitions: Magnetic, Calorimetric, and Mössbauer-Effect Properties of[FexCo1-x(4, 4'-bis-1, 2, 4-triazole)2(NCS)2] ·H2O Mixed-Crystal Compounds[J]. Inorg. Chem., 1994,33(26):6325-6333. doi: 10.1021/ic00104a049

    27. [27]

      Domracheva N E, Pyataev A V, Vorobeva V E, Zueva E M. Detailed EPR Study of Spin Crossover Dendrimeric Iron(Ⅲ) Complex[J]. J. Phys. Chem. B, 2013,117(25):7833-7842. doi: 10.1021/jp403682p

    28. [28]

      Domracheva N, Pyataev A, Manapov R, Gruzdev M, Chervonova U, Kolker A. Structural, Magnetic and Dynamic Characterization of Liquid Crystalline Iron(Ⅲ) Schiff Base Complexes with Asymmetric Ligands[J]. Eur. J. Inorg. Chem., 2011(8):1219-1229.

    29. [29]

      Thammasangwan W, Harding P, Telfer S G, Alkaş A, Phonsri W, Murray K S, Clérac R, Rouzières M, Chastanet G, Harding D J. Thermal and Light-Activated Spin Crossover in Iron(Ⅲ) qnal Complexes[J]. Eur. J. Inorg. Chem., 2020(14):1325-1330.

    30. [30]

      Ouyang Z J, Mo X Y, Yang M, Zhong L, Chen W B, Gao S, Dong W. High Temperature Fe(Ⅲ) Spin Crossover Behaviours in Three Unprecedented Fe—M—Fe (M=Fe, Cd) Linear Trinuclear Complexes[J]. Inorg. Chem. Front., 2020,7(7):1526-1531. doi: 10.1039/C9QI01560D

    31. [31]

      Weber B, Bauer W, Obel J. An Iron(Ⅱ) Spin-Crossover Complex with a 70 K Wide Thermal Hysteresis Loop[J]. Angew. Chem. Int. Ed., 2008,47(52):10098-10101. doi: 10.1002/anie.200802806

    32. [32]

      Hayami S, Gu Z, Yoshiki H, Fujishima A, Sato O. Iron(Ⅲ) Spin-Crossover Compounds with a Wide Apparent Thermal Hysteresis around Room Temperature[J]. J. Am. Chem. Soc., 2001,123(47):11644-11650. doi: 10.1021/ja0017920

    33. [33]

      Feng L J, Yuan Y H, Yan B J, Feng T T, Jian Y P, Zhang J C, Sun W Y, Lin K, Luo G S, Wang N. Halogen Hydrogen-Bonded Organic Framework (XHOF) Constructed by Singlet Open-Shell Diradical for Efficient Photoreduction of U(Ⅵ)[J]. Nat. Commun., 2022,131389. doi: 10.1038/s41467-022-29107-9

  • 加载中
    1. [1]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    6. [6]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    7. [7]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    8. [8]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    9. [9]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    10. [10]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    11. [11]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    12. [12]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    13. [13]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    14. [14]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    15. [15]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    16. [16]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    17. [17]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    18. [18]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    19. [19]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    20. [20]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

Metrics
  • PDF Downloads(3)
  • Abstract views(518)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return