Citation: Qian-Xing YUAN, Wei-Min CHEN, Xin-Rong LÜ. Effect of One-Dimensional/Two-Dimensional Composite Carbon Support on Methanol Oxidation Performance of Pd Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2165-2172. doi: 10.11862/CJIC.2022.232 shu

Effect of One-Dimensional/Two-Dimensional Composite Carbon Support on Methanol Oxidation Performance of Pd Catalysts

  • Corresponding author: Wei-Min CHEN, cwm@sylu.edu.cn
  • Received Date: 14 February 2022
    Revised Date: 28 September 2022

Figures(9)

  • CNTs-GNPs, hybrid support composed of carbon nanotubes (CNTs) and graphene nanoplates (GNPs) was prepared by a solid phase -liquid phase two-step mixing method. The Pd/CNTs -GNPs catalyst was prepared by depo- sition of Pd nanoparticles on composite carbon support by the ethylene glycol reduction method. The morphologies, compositions, and structures of catalysts were characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The performances of catalysts for methanol electrooxidation were investigated by electrochemical methods. The results showed that Pd/CNTs -GNPs(1/4) (the mass fraction of GNPs was 1/4) cata- lyst exhibited a large electrochemical surface area and high performances for methanol electrooxidation, and its peak current density of methanol oxidation was 1.97 times that of the Pd/CNTs catalyst. The high activity of the cata- lyst is attributed to the good dispersion of Pd nanoparticles on the one - dimensional/two - dimensional composite CNTs - GNPs support. The chronoamperometry test showed that Pd catalysts supported on the CNTs - GNPs hybrid support had stronger anti-poisoning abilities as compared to the Pd catalyst supported on a single carbon support.
  • 加载中
    1. [1]

      YI B L. Fuel Cells: Principle and Technology Application. Beijing: Chemical Industry Press, 2003: 5-61

    2. [2]

      Ramli Z A C, Kamarudin S K. Platinum-Based Catalysts on Various Carbon Supports and Conducting Polymers for Direct Methanol Fuel Cell Applications: A Review[J]. Nanoscale Res. Lett., 2018,13(1)410. doi: 10.1186/s11671-018-2799-4

    3. [3]

      Zhan Y F, Xie F Y, Zhang H, Jin Y S, Meng H, Chen J, Sun X L. Highly Dispersed Nonprecious Metal Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. ACS Appl. Mater. Interfaces, 2020,12(15):17481-17491. doi: 10.1021/acsami.0c00126

    4. [4]

      CHEN W M. Stabilization of Nanocatalysts in Fuel Cells[J]. Prog. Chem., 2012,24(2/3):246-252.  

    5. [5]

      Sibul R, Kibena-Põldsepp E, Ratso S, Kook M, Sougrati M T, Käärik M, Merisalu M, Aruväli J, Paiste P, Treshchalov A, Leis J, Kisand V, Sammelselg V, Holdcroft S, Jaouen F, Tammeveski K. Iron-and Nitrogen-Doped Graphene -Based Catalysts for Fuel Cell Applications[J]. ChemElectroChem, 2020,7(7):1739-1747. doi: 10.1002/celc.202000011

    6. [6]

      Xie J, Zhang Q, Gu L, Xu S, Wang P, Liu J G, Ding Y, Yao Y F, Nan C, Zhao M, You Y, Zou Z G. Ruthenium-Platinum Core-Shell Nanocatalysts with Substantially Enhanced Activity and Durability towards Methanol Oxidation[J]. Nano Energy, 2016,21:247-257. doi: 10.1016/j.nanoen.2016.01.013

    7. [7]

      Dao D V, Le T D, Adilbish G, Lee I H, Yu Y T. Pt-Loaded Au@CeO2 Core-Shell Nanocatalysts for Improving Methanol Oxidation Reaction Activity[J]. J. Mater. Chem. A, 2019,7(47):26996-27006. doi: 10.1039/C9TA09333H

    8. [8]

      Chen A, Ostrom C. Palladium-Based Nanomaterials: Synthesis and Electrochemical Applications[J]. Chem. Rev., 2015,115(21):11999-12044. doi: 10.1021/acs.chemrev.5b00324

    9. [9]

      Lamy C, Belgsir E M, Leger J M. Electrocatalytic Oxidation of Aliphatic Alcohols: Application to the Direct Alcohol Fuel Cell (DAFC)[J]. J. Appl. Electrochem., 2001,31(7):799-809. doi: 10.1023/A:1017587310150

    10. [10]

      Farsadrooh M, Yazdan-Abad M Z, Noroozifar M, Alfi N, Modarresi-Alam A R. Fast Improved Polyol Method for Synthesis of Pd/C Catalyst with High Performance toward Ethanol Electrooxidation[J]. Int. J. Hydrogen Energy, 2020,45(51):27312-27319. doi: 10.1016/j.ijhydene.2020.07.149

    11. [11]

      LI Z, WANG Z, LI Q, BAN L Q, ZHUANG W D, LU S G. A Strategy for Carbon Nanotubes Modified Lithium-Manganese-Rich Cathode Material[J]. Chinese J. Inorg. Chem., 2019,35(9):1561-1569.  

    12. [12]

      Akbari E, Buntat Z. Benefits of Using Carbon Nanotubes in Fuel Cells: A Review[J]. Int. J. Energy Res., 2017,41(1):92-102. doi: 10.1002/er.3600

    13. [13]

      Pan L, Zhu X D, Xie X M, Liu Y T. Smart Hybridization of TiO2 Nanorods and Fe3O 4 Nanoparticles with Pristine Graphene Nanosheets: Hierarchically Nanoengineered Ternary Heterostructures for High-Rate Lithium Storage[J]. Adv. Funct. Mater., 2015,25(22):3341-3350. doi: 10.1002/adfm.201404348

    14. [14]

      Yan D J, Zhu X D, Mao Y C, Qiu S Y, Gu L L, Feng Y J, Sun K N. Hierarchically Organized CNT@TiO2@Mn3O4 Nanostructures for Enhanced Lithium Storage Performance[J]. J. Mater. Chem. A, 2017,5(32):17048-17055. doi: 10.1039/C7TA02823G

    15. [15]

      Elangovan A, Xu J, Sekar A, Liu B, Li J. Enhancing Methanol Oxida-tion Reaction with Platinum-Based Catalysts Using a N-Doped Three-Dimensional Graphitic Carbon Support[J]. ChemCatChem, 2020,12(23):6000-6012. doi: 10.1002/cctc.202001162

    16. [16]

      Shao M H, Chang Q W, Dodelet J P, Chenitz R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction[J]. Chem. Rev., 2016,116:3594-3657. doi: 10.1021/acs.chemrev.5b00462

    17. [17]

      Fan X, Yuan W, Zhang D H, Li C M. Heteropolyacid-Mediated Self-Assembly of Heteropolyacid-Modified Pristine Graphene Supported Pd Nanoflowers for Superior Catalytic Performance toward Formic Acid Oxidation[J]. ACS Appl. Energy Mater., 2018,1(2):411-420. doi: 10.1021/acsaem.7b00081

    18. [18]

      Wang Y F, Lv F C, Song Y, Yang Y, Cao Y, Wang J, Li C, Wang W. A Facile Rheological Approach for the Evaluation of"Super Toughness Point"of Compatibilized HDPE/MWCNT Nanocomposites[J]. Polym. Test, 2020,81106280. doi: 10.1016/j.polymertesting.2019.106280

    19. [19]

      Pérez-Rodríguez S, Alegre C, Sebastián D, Lázaro M J. Emerging Carbon Nanostructures in Electrochemical Processes//Sadjadi S. Emerging Carbon Materials for Catalysis. Netherlands: Elsevier, 2021: 353-388

    20. [20]

      Jiang H, Lee P S, Li C. 3D Carbon Based Nanostructures for Advanced Supercapacitors[J]. Energy Environ. Sci., 2013,6(1):41-53. doi: 10.1039/C2EE23284G

    21. [21]

      Martínez-Loyola J C, Siller -Ceniceros A A, Sánchez-Castro M E, Sánchez M, Torres -Lubián J R, Escobar-Morales B, Ornelas C, Alonso-Lemus L I, Rodríguez -Varela F J. High Performance Pt Nanocatalysts for the Oxidation of Methanol and Ethanol in Acid Media by Effect of Functionalizing Carbon Supports with Ru Organometallic Compounds[J]. J. Electrochem. Soc., 2020,167(16)164502. doi: 10.1149/1945-7111/abcabb

    22. [22]

      Lo A Y, Hung C T, Yu N, Kuo C T, Liu S B. Syntheses of Carbon Porous Materials with Varied Pore Sizes and Their Performances as Catalyst Supports During Methanol Oxidation Reaction[J]. Appl. Energy, 2012,100:66-74. doi: 10.1016/j.apenergy.2012.05.043

    23. [23]

      Lilloja J, Kibena-Poldsepp E, Sarapuu A, Kodali M, Chen Y, Asset T, Käärik M, Merisalu M, Paiste P, Aruvali J, Treshchalov A, Rähn M, Leis J, Sammelselg V, Holdcroft S, Atanassov P. Cathode Catalysts Based on Cobalt-and Nitrogen -Doped Nanocarbon Composites for Anion Exchange Membrane Fuel Cells[J]. ACS Appl. Energy Mater., 2020,3(6):5375-5384. doi: 10.1021/acsaem.0c00381

    24. [24]

      Huang J J, Zang J B, Zhao Y L, Dong L, Wang Y H. One-Step Synthesis of Nanocrystalline TiO2 -Coated Carbon Nanotube Support for Pt Electrocatalyst in Direct Methanol Fuel Cell[J]. Mater. Lett., 2014,137:335-338. doi: 10.1016/j.matlet.2014.09.051

    25. [25]

      Martins C A, Fernández P S, De Lima F, Troiani H E, Martins M E, Arenillas A, Maia G, Camara G. Remarkable Electrochemical Stabil-ity of One-Step Synthesized Pd Nanoparticles Supported on Graphene and Multi -walled Carbon Nanotubes[J]. Nano Energy, 2014,9:142-151. doi: 10.1016/j.nanoen.2014.07.009

    26. [26]

      Pongpichayakul N, Waenkeaw P, Jakmunee J, Themsirimongkon S, Saipanya S. Activity and Stability Improvement of Platinum Loaded on Reduced Graphene Oxide and Carbon Nanotube Composites for Methanol Oxidation[J]. J. Appl. Electrochem., 2020,50(1):51-62. doi: 10.1007/s10800-019-01368-1

    27. [27]

      Yousaf A B, Imran M, Zaidi S J, Kasak P. Engineering and Understanding of Synergistic Effects in the Interfaces of RGO-CNTs/PtPd Nanocomposite Revealed Fast Electro-Oxidation of Methanol[J]. J. Electroanal. Chem., 2019,832:343-352. doi: 10.1016/j.jelechem.2018.11.033

    28. [28]

      Wegrzyn M, Galindo B, Benedito A, Gimenez E. Morphology, Thermal, and Electrical Properties of Polypropylene Hybrid Composites Co-filled with Multi-walled Carbon Nanotubes and Graphene Nanoplatelets[J]. J. Appl. Polym. Sci., 2015,132(46)42793.

    29. [29]

      Esabattina S, Posa V R, Hong Z L, Godlaveeti S K, Reddy R R N, Somala A R. Fabrication of Bimetallic PtPd Alloy Nanospheres Supported on rGO Sheets for Superior Methanol Electro -Oxidation[J]. Int. J. Hydrogen Energy, 2018,43(8):4115-4124. doi: 10.1016/j.ijhydene.2017.07.193

    30. [30]

      Chen W M, Zhu Z Y, Al-Khawlani A, Yuan Q X. A Pd Nanocatalyst Supported on a Polymer-Modified Hybrid Carbon Material for Methanol Oxidation[J]. J. Appl. Electrochem., 2020,50:1059-1067. doi: 10.1007/s10800-020-01460-x

    31. [31]

      Ratso S, Kruusenberg I, Vikkisk M, Joost U, Shulga E, Kink I, Kallio T, Tammeveski K. Highly Active Nitrogen-Doped Few-Layer Graphene/Carbon Nanotube Composite Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media[J]. Carbon, 2014,73:361-370. doi: 10.1016/j.carbon.2014.02.076

    32. [32]

      Habibi B, Imanzadeh H, Shishavan Y H, Amiri M. Effect of Carbon Support on the Electrocatalytic Performance of the Pt Nanoparticles Toward Oxidation of Formic Acid[J]. Catal. Lett., 2020,150(2):312-321. doi: 10.1007/s10562-019-03018-9

    33. [33]

      Ning L N, Liu X H, Deng M, Huang Z Z, Zhu A M, Zhang Q G, Liu Q L. Palladium -Based Nanocatalysts Anchored on CNT with High Activity and Durability for Ethanol Electro -Oxidation[J]. Electrochim. Acta, 2019,297:206-214. doi: 10.1016/j.electacta.2018.11.188

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(0)
  • Abstract views(441)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return