Citation: Xue-Dong WEI, Nan LIU, Shuang-Yan QIAO. Preparation and Oxygen Evolution Reaction Electrocatalytic Performance of NiMoO4 Nanowires@ZnCo MOF(350) Core-Shell Structure Composites[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2308-2320. doi: 10.11862/CJIC.2022.231 shu

Preparation and Oxygen Evolution Reaction Electrocatalytic Performance of NiMoO4 Nanowires@ZnCo MOF(350) Core-Shell Structure Composites

  • Corresponding author: Xue-Dong WEI, weixd@sxnu.edu.cn
  • Received Date: 18 June 2022
    Revised Date: 18 September 2022

Figures(9)

  • A novel NiMoO4 NWs@ZnCo MOF (NWs=nanowires) was successfully synthesized by making a layer of ZnCo metal-organic framework (MOF) nanocrystals in situ grown on the NiMoO4 NWs by liquid phase synthesis and then it was heat-treated at 350 ℃ (named NiMoO4 NWs@ZnCo MOF(350)). It was found that the structure and morphology of the precursor were still well maintained after heat treatment, but a very small amount of Co3O4 phase appeared in ZnCo MOF, indicating that slight pyrolysis occurred. Chemical bonds C—O—Mo and a large number of oxygen vacancies generated at the phase heterointerfaces can become the source of active sites. The formation of a new Co3O4 phase also leads to a further increase in the heterophase interfaces. Furthermore, a little pyrolysis made the surface of the core-shell structure more coarse, loose, and porous, producing a higher specific surface area, faster ionic diffusion path, and better electrical conductivity. Therefore, according to the inert glassy carbon electrode test, the electrocatalyst exhibited a low overpotential of 360 mV at the current density of 10 mA·cm-2 and maintained long-term catalytic stability of 30 000 s.
  • 加载中
    1. [1]

      Paul A, Upadhyay K K, Backovic G, Karmakar A, Ferreira L F V, Sljukic B, Montemor M F, da Silva M F C G, Pombeiro A J L. Versatility of Amide-Functionalized Co (Ⅱ) and Ni(Ⅱ) Coordination Polymers: From Thermochromic-Triggered Structural Transformations to Supercapacitors and Electrocatalysts for Water Splitting[J]. Inorg. Chem., 2020,59:16301-16318. doi: 10.1021/acs.inorgchem.0c02084

    2. [2]

      Wang X Z, Liu S, Zhang H, Zhang S S, Meng G, Liu Q, Sun Z Y, Luo J, Liu X J. Polycrystalline SnSx Nanofilm Enables CO2 Electroreduction to Formate with High Current Density[J]. Chem. Commun., 2022,58:7654-7657. doi: 10.1039/D2CC01888H

    3. [3]

      Meng G, Wei T R, Liu W J, Li W B, Zhang S S, Liu W X, Liu Q, Bao H H, Luo J, Liu X J. NiFe Layered Double Hydroxide Nanosheet Array for High-Efficiency Electrocatalytic Reduction of Nitric Oxide to Ammonia[J]. Chem. Commun., 2022,58:8097-8100. doi: 10.1039/D2CC02463B

    4. [4]

      Li X F, Ma D D, Cao C S, Zou R Q, Xu Q, Wu X T, Zhu Q L. Inlaying Ultrathin Bimetallic MOF Nanosheets into 3D Ordered Macroporous Hydroxide for Superior Electrocatalytic Oxygen Evolution[J]. Small, 2019,151902218. doi: 10.1002/smll.201902218

    5. [5]

      Chen X, Xu M Y, Li S, Li C C, Sun X C, Mu S C, Yu J. Ultrafine IrNi Bimetals Encapsulated in Zeolitic Imidazolate Frameworks-Derived Porous N-Doped Carbon for Boosting Oxygen Evolution in Both Alkaline and Acidic Electrolytes[J]. Adv. Mater. Interfaces, 2020,7202001145.

    6. [6]

      Hou J R, Peng X Y, Sun J Q, Zhang S S, Liu Q, Wang X Z, Luo J, Liu X J. Accelerating Hydrazine-Assisted Hydrogen Production Kinetics with Mn Dopant Modulated CoS2 Nanowire Arrays[J]. Inorg. Chem. Front., 2022,9:3047-3058.

    7. [7]

      Li L F, Wang P T, Huang X Q, Young D J, Wang H F, Braunstein P, Lang J P. Large-Scale, Bottom-Up Synthesis of Binary Metal-Organic Framework Nanosheets for Efficient Water Oxidation[J]. Angew. Chem. Int. Ed., 2019,58:7051-7056.

    8. [8]

      Yang M S, Liu Y F, Sun J Q, Zhang S S, Liu X J, Luo J. Integration of Partially Phosphatized Bimetal Centers into Trifunctional Catalyst for High-Performance Hydrogen Production and Flexible Zn-Air Battery[J]. Sci. China Mater., 2022,65:1176-1186. doi: 10.1007/s40843-021-1902-2

    9. [9]

      Li L F, Shao P, Huang X Q, Lang J P. Nanoscale Trimetallic Metal-Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis[J]. Angew. Chem. Int. Ed., 2018,57:1888-1892. doi: 10.1002/anie.201711376

    10. [10]

      Wu L L, Wang Q S, Li J, Long Y, Liu Y, Song S Y, Zhang H J. Co9S8 Nanoparticles-Embedded N/S-Codoped Carbon Nanofibers Derived from Metal-Organic Framework-Wrapped CdS Nanowires for Efficient Oxygen Evolution Reaction[J]. Small, 2018,141704035. doi: 10.1002/smll.201704035

    11. [11]

      Xu Y Y, Deng P L, Chen G D, Chen Y X, Yan Y, Qi K, Liu H F, Xia B Y. 2D Nitrogen-Doped Carbon Nanotubes/Graphene Hybrid as Bifunctional Oxygen Electrocatalyst for Long-Life Rechargeable Zn-Air Batteries[J]. Adv. Funct. Mater., 2020,301906081. doi: 10.1002/adfm.201906081

    12. [12]

      Bai Z Y, Heng J M, Zhang Q, Yang L, Chang F F. Rational Design of Dodecahedral MnCo2O4.5 Hollowed-Out Nanocages as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution[J]. Adv. Energy Mater., 2018,81802390. doi: 10.1002/aenm.201802390

    13. [13]

      Yu P, Wang L, Sun F F, Xie Y, Liu X, Ma J Y, Wang X W, Tian C G, Li J H, Fu H G. Co Nanoislands Rooted on Co-N-C Nanosheets as Efficient Oxygen Electrocatalyst for Zn-Air Batteries[J]. Adv. Mater., 2019,311901666.

    14. [14]

      Amiinu I S, Pu Z H, Liu X B, Owusu K A, Monestel H G R, Boakye F O, Zhang H N, Mu S C. Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries[J]. Adv. Funct. Mater., 2017,271702300. doi: 10.1002/adfm.201702300

    15. [15]

      Chen Z L, Wu R B, Liu Y, Ha Y, Guo Y H, Sun D L, Liu M, Fang F. Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction[J]. Adv. Mater., 2018,301802011. doi: 10.1002/adma.201802011

    16. [16]

      Wang X, Ma Z J, Chai L L, Xu L Q, Zhu Z Y, Hu Y, Qian J J, Huang S M. MOF Derived N-Doped Carbon Coated CoP Particle/Carbon Nanotube Composite For Efficient Oxygen Evolution Reaction[J]. Carbon, 2019,141:643-651.

    17. [17]

      Wan J, Wu J B, Gao X, Li T Q, Hu Z M, Yu H M, Huang L. Structure Confined Porous Mo 2C for Efficient Hydrogen Evolution[J]. Adv. Funct. Mater., 2017,27(45)1703933. doi: 10.1002/adfm.201703933

    18. [18]

      Sun L S, Wang C L, Sun Q J, Cheng Y, Wang L M. Self-Assembly of Hierarchical Ni-Mo-Polydopamine Microflowers and Their Conversion to a Ni-Mo2C/C Composite for Water Splitting[J]. Chem. Eur. J., 2017,23:4644-4650. doi: 10.1002/chem.201605928

    19. [19]

      Guo D, Zhang P, Zhang H M, Yu X Z, Zhu J, Li Q H, Wang T H. NiMoO4 Nanowires Supported On Ni Foam as Novel Advanced Electrodes for Supercapacitors[J]. J. Mater. Chem. A, 2013,1:9024-9027. doi: 10.1039/c3ta11487b

    20. [20]

      He D, Gao Y, Yao Y, Wu L, Zhang J, Huang Z H, Wang M X. Asymmetric Supercapacitors Based on Hierarchically Nanoporous Carbon and ZnCo2O4 from a Single Biometallic Metal Organic Frameworks (Zn/Co-MOF)[J]. Front. Chem., 2020,8719. doi: 10.3389/fchem.2020.00719

    21. [21]

      Erarkc E, Kranan K D, Topu E. Three-Dimensional ZnCo-MOF Modified Graphene Sponge: Flexible Electrode Material for Symmetric Supercapacitor[J]. Energy Fuels, 2022,36:1735-1745. doi: 10.1021/acs.energyfuels.1c04183

    22. [22]

      Dong B, Zhao X, Han G Q, Li X, Shang X, Liu Y R, Hu W H, Chai Y M, Zhao H, Liu C G. Two-Step Synthesis of Binary Ni-Fe Sulfides Supported on Nickel Foam as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction[J]. J. Mater. Chem. A, 2016,4:13499-13508. doi: 10.1039/C6TA03177C

    23. [23]

      Li Y Q, Xu H B, Huang H Y, Wang C, Gao L G, Ma T L. One-Dimensional MoO2-Co2Mo3O8@C Nanorods: A Novel and Highly Efficient Oxygen Evolution Reaction Catalyst Derived from Metal-Organic Framework Composites[J]. Chem. Commun., 2018,54:2739-2742.

    24. [24]

      Fu Y, Wang W J, Wang J W, Li X N, Shi R, Peng O, Chandrashekar B N, Liu K, Amini A, Cheng C. MOFs-Derived ZnCo-Fe Core-Shell Nanocages with Remarkable Oxygen Evolution Reaction Performance[J]. J. Mater. Chem. A, 2019,7:17299-17305.

    25. [25]

      Sun J, Xue H, Guo N K, Song T S, Hao Y R, Sun J W, Zhang J W, Wang Q. Synergetic Metal Defect and Surface Chemical Reconstruction into NiCo2S4/ZnS Heterojunction to Achieve Outstanding Oxygen Evolution Performance[J]. Angew. Chem. Int. Ed., 2021,60:19435-19441.

    26. [26]

      An L, Huang B L, Zhang Y, Wang R, Zhang N, Dai T Y, Xi P X, Yan C H. Interfacial Defect Engineering for Improved Portable Zinc-Air Batteries with a Broad Working Temperature[J]. Angew. Chem. Int. Ed., 2019,58:9459-9463.

    27. [27]

      Shang C Q, Li M C, Wang Z Y, Wu S F, Lu Z G. Electrospun Nitrogen-Doped Carbon Nanofibers Encapsulating Cobalt Nanoparticles as Efficient Oxygen Reduction Reaction Catalysts[J]. ChemElectroChem, 2016,3:1437-1445.

    28. [28]

      Li L J, Liu S Y, Manthiram A. Co3O4 Nanocrystals Coupled with O-and N-Doped Carbon Nanoweb as a Synergistic Catalyst for Hybrid Li-Air Batteries[J]. Nano Energy, 2015,12:852-860.

    29. [29]

      Chen Z L, Wang S F, Zhang Z B, Zhou W L, Chen D J. Facile Synthesis of Co3O4/Co@N-Doped Carbon Nanotubes as Anode with Improved Cycling Stability for Li-Ion Batteries[J]. Electrochim. Acta, 2018,292:575-585.

    30. [30]

      Kim Y, Noh Y, Han H, Bae J, Park S, Lee S, Yoon W, Kim Y K, Ahn H, Ham M H, Kim W B. Effect of N-Doped Carbon Layer on Co3O4 Nanowire-Graphene Composites as Anode Materials for Lithium Ion Batteries[J]. J. Phys. Chem. Solids, 2019,124:266-273.

    31. [31]

      Lin Z Y, Waller G, Liu Y, Liu M L, Wong C P. Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and Its Electrocatalytic Activity toward the Oxygen-Reduction Reaction[J]. Adv. Energy Mater., 2012,2:884-888.

    32. [32]

      Wu Y H, Li Y W, Gao J G, Zhang Q C. Recent Advances in Vacancy Engineering of Metal-Organic Frameworks and Their Derivatives for Electrocatalysis[J]. SusMat, 2021,1:66-87.

    33. [33]

      Chong S K, Sun L, Shu C Y, Guo S W, Liu Y N, Wang W, Liu H K. Chemical Bonding Boosts Nano-rose-like MoS2 Anchored on Reduced Graphene Oxide for Superior Potassium-Ion Storage[J]. Nano Energy, 2019,63103868.

    34. [34]

      Zhou Y N, Wang F L, Dou S Y, Shi Z N, Dong B, Yu W L, Zhao H Y, Wang F G, Yu J F, Chai Y M. Motivating High-Valence Nb Doping by Fast Molten Salt Method for NiFe Hydroxides toward Efficient Oxygen Evolution Reaction[J]. Chem. Eng. J., 2022,427131643.

  • 加载中
    1. [1]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    2. [2]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    3. [3]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    4. [4]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    7. [7]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    8. [8]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    9. [9]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    10. [10]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    11. [11]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(8)
  • Abstract views(577)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return