Citation: Ying-Jie LI, Xu-Chang WANG, Jia-Jun ZHENG, Bo QIN, Yan-Ze DU, Rui-Feng LI. Synthesis and Catalytic Performance of Hierarchical Ultrastable Y-Type Zeolite with Ubstantially Increasing Acid Sites[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2401-2411. doi: 10.11862/CJIC.2022.230 shu

Synthesis and Catalytic Performance of Hierarchical Ultrastable Y-Type Zeolite with Ubstantially Increasing Acid Sites

Figures(12)

  • Ultrastable Y-type (USY) zeolite catalysts with high acid content and high hydrothermal stability (USY-c-w) were obtained by crystallizing an industrial USY-zeolite in a traditional hydrothermal system with the help of a surfactant cetyltrimethylammonium bromide (CTABr). The physicochemical properties of as-synthesized USY-zeolite samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), solid-state NMR, N2 adsorption-desorption, ammonia temperature programmed desorption (NH3-TPD), FT-IR, and pyridine infrared spectroscopy (Py-IR). Catalytic cracking of 1, 3, 5-triisopropylbenzene (TIPB) was selected as a probe reaction to investigate the catalytic performance of as-synthesized catalysts and compare it with that of the industrial USY-zeolite. The results exhibited that after hydrothermal re-crystallization, the framework of USY-zeolite suffered from a partial reformation. Desilicication by steam or alkali treatment results in the formation of a large number of silanol nests, which reacts with Al species resulting from the non-framework aluminum in the USY-zeolite and then promotes the formation of the"new"framework Al. This offers as-synthesized sample with a less Si/Al ratio (nSi/nAl) and with increasing acid sites. The increased Al content in the zeolite framework was confirmed by the results of XRD, FTIR, X-ray energy dispersive spectrum (EDS), and NMR. For example, the framework Si/Al ratio decreased from 10 (industrial USY-zeolite) to 3.0 (USY-045-07C). The NH3-TPD experiment and Py-IR provided direct evidence supporting the increased acidity in as-synthesized catalysts. Moreover, the results obtained by the N2 adsorption-desorption experiment, SEM, and TEM also showed that abundant mesopores were also introduced into as-synthesized samples with more weak acid sites along with more medium-strong acid ones. During the catalytic cracking of TIPB, as-synthesized USY-c-w showed more excellent catalytic performance with higher conversion of TIPB than the reference sample.
  • 加载中
    1. [1]

      Lutz W. Zeolite Y: Synthesis, Modification, and Properties—A Case Revisited[J]. Adv. Mater. Sci. Eng., 2014724248.

    2. [2]

      Verboekend D, Nuttens N, Locus R, van Aelst J, Verolme P, Groen J C, Pérez-Ramírez J, Sels B F. Synthesis, Characterisation, and Catalytic Evaluation of Hierarchical Faujasite Zeolites: Milestones, Challenges, and Future Directions[J]. Chem. Soc. Rev., 2016,45(12):3331-3352. doi: 10.1039/C5CS00520E

    3. [3]

      van Donk S, Janssen A H, Bitter J H, de Jong K P. Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts[J]. Catal. Rev.-Sci. Eng., 2003,45(2):297-319. doi: 10.1081/CR-120023908

    4. [4]

      Qin Z X, Shen B J, Gao X H, Lin F, Wang B J, Xu C M. Mesoporous Y Zeolite with Homogeneous Aluminum Distribution Obtained by Sequential Desilication-Dealumination and Its Performance in the Catalytic Cracking of Cumene and 1, 3, 5-Triisopropylbenzene[J]. J. Catal., 2011,278(2):266-275. doi: 10.1016/j.jcat.2010.12.013

    5. [5]

      Verboekend D, Milina M, Mitchell S, Pérez-Ramírez J. Hierarchical Zeolites by Desilication: Occurrence and Catalytic Impact of Recrystallization and Restructuring[J]. Cryst. Growth Des., 2013,13(11):5025-5035. doi: 10.1021/cg4010483

    6. [6]

      Kenvinresulting J, Mitchell S, Sterling M, Warringham R, Keller T C, Crivelli P, Jagiello J, Pérez-Ramírez J. Quantifying the Complex Pore Architecture of Hierarchical Faujasite Zeolites and the Impact on Diffusion[J]. Adv. Funct. Mater., 2016,26(31):5621-5630. doi: 10.1002/adfm.201601748

    7. [7]

      Etim U J, Xu B J, Zhang Z, Zhong Z Y, Bai P, Qiao K, Yan Z F. Improved Catalytic Cracking Performance of USY in the Presence of Metal Contaminants by Post-synthesis Modification[J]. Fuel, 2016,178:243-252. doi: 10.1016/j.fuel.2016.03.060

    8. [8]

      Silva J F, Ferracine E D, Cardoso D. Effects of Different Variables on the Formation of Mesopores in Y Zeolite by the Action of CTA+ Surfactant[J]. Appl. Sci., 2018,8(8)1299. doi: 10.3390/app8081299

    9. [9]

      Li C, Guo L L, Liu P, Gong K, Jin W L, Li L, Zhu X C, Liu X C, Shen B J. Defects in AHFS-Dealuminated Y Zeolite: A Crucial Factor for Mesopores Formation in the Following Base Treatment Procedure[J]. Microporous Mesoporous Mater., 2018,255:242-252. doi: 10.1016/j.micromeso.2017.07.046

    10. [10]

      Gackowski M, Tarach K, Kuterasiński Ł, Podobiński J, Sulikowski B, Datka J. Spectroscopic IR and NMR Studies of Hierarchical Zeolites Obtained by Desilication of Zeolite Y: Optimization of the Desilication Route[J]. Microporous Mesoporous Mater., 2019,281:134-141. doi: 10.1016/j.micromeso.2019.03.004

    11. [11]

      García-Martínez J, Johnson M, Valla J, Li K, Ying J Y. Mesostructured Zeolite Y-High Hydrothermal Stability and Superior FCC Catalytic Performance[J]. Catal. Sci. Technol., 2012,2(5):987-994. doi: 10.1039/c2cy00309k

    12. [12]

      Sachse A, Grau-Atienza A, Jardim E O, Linares N, Thomme M, García-Martínez J. Development of Intracrystalline Mesoporosity in Zeolites through Surfactant-Templating[J]. Cryst. Growth Des., 2017,17(8):4289-4305. doi: 10.1021/acs.cgd.7b00619

    13. [13]

      van Aelst J, Haouas M, Gobechiya E, Houthoofd K, Philippaerts A, Sree S P, Kirschhock C E A, Jacobs P, Martens J A, Sels B F, Taulelle F. Hierarchization of USY Zeolite by NH4OH. A Postsynthetic Process Investigated by NMR and XRD[J]. J. Phys. Chem. C, 2014,118(39):22573-22582.

    14. [14]

      van Aelst J, Verboekend D, Philippaerts A, Nuttens N, Kurttepeli M, Gobechiya E, Haouas M, Sree S, Denayer J F M, Martens J A, Kirschhock C E A, Taulelle F, Bals S, Baron G, Jacobs P A, Sels B F. Catalyst Design by NH4OH Treatment of USY Zeolite[J]. Adv. Funct. Mater., 2015,25(46):7130-7144. doi: 10.1002/adfm.201502772

    15. [15]

      Sohn J R, DeCanio S J, Stephen J, Lunsford J H, O'Donnell D J. Determination of Framework Aluminium Content in Dealuminated Y-Type Zeolites: A Comparison Based on Unit Cell Size and Wavenumber of I[J]. R. Bands. Zeolites, 1986,6(3):225-227. doi: 10.1016/0144-2449(86)90054-0

    16. [16]

      Zhang M N, Qin B, Zhang W M, Zheng J J, Ma J H, Du Y Z, Li R F. Hydrocracking of Light Diesel Oil over Catalysts with Industrially Modified Y Zeolites[J]. Catalysts, 2020,10(8):815-826. doi: 10.3390/catal10080815

    17. [17]

      Liu D S, Bao S L, Xu Q H. Structural Evolution of Dealuminated Y Zeolites during KOH Solution Treatment[J]. Zeolites, 1997,18(2):162-170.

    18. [18]

      Gackowski M, Podobiński J, Broclawik E, Datka J. IR and NMR Studies of the Status of Al and Acid Sites in Desilicated Zeolite Y[J]. Molecules, 2020,25(1)31.

    19. [19]

      GUO D L, ZHENG J J, YI Y M, ZHANG Q, PAN M, LI R F. Synthesis and Characterization of FMZ Bi-Phases Composite Zeolites[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013,29(4):591-596. doi: 10.3969/j.issn.1001-8719.2013.04.007

    20. [20]

      Kortunov P, Vasenkov S, Kärger J, Valiullin R, Gottschalk P, Elía M F, Perez M, Stöcker M, Drescher B, McElhiney G, Berger C, Gläser R, Weitkamp J. The Role of Mesopores in Intracrystalline Transport in USY Zeolite: PFG NMR Diffusion Study on Various Length Scales[J]. J. Am. Chem. Soc., 2005,127(37):13055-13059. doi: 10.1021/ja053134r

    21. [21]

      Groen J C, Bach T, Ziese U, van Donk A M P, de Jong K P, Moulijn J A, Pérez-Ramírez J. Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals[J]. J. Am. Chem. Soc., 2005,127(31):10792-10793. doi: 10.1021/ja052592x

    22. [22]

      Groen J C, Zhu W D, Brouwer S, Huynink S J, Kapteijn F, Moulijn J A, Pérez-Ramírez J. Direct Demonstration of Enhanced Diffusion in Mesoporous ZSM-5 Zeolite Obtained via Controlled Desilication[J]. Am. Chem. Soc., 2007,129(2):355-360. doi: 10.1021/ja065737o

    23. [23]

      Zhang X W, Guo Q, Qin B, Zhang Z Z, Ling F X, Sun W F, Li R F. Structural Features of Binary Microporous Zeolite Composite Y-Beta and Its Hydrocracking Performance[J]. Catal. Today, 2010,149(1/2):212-217.

    24. [24]

      Ma J H, Kang Y H, Ma N, Hao W M, Wang Y, Li R F. A High Acid Mesoporous USY Zeolite Prepared by Alumination[J]. Mater. Sci., 2013,31(1):19-24.

    25. [25]

      Jiao Y L, Forster L, Xu S J, Chen H H, Han J F, Liu X Q, Zhou Y T, Liu J M, Zhang J S, Yu J H, D'Agostino C, Fan X L. Creation of Al-Enriched Mesoporous ZSM-5 Nanoboxes with High Catalytic Activity: Converting Tetrahedral Extra-Framework Al into Framework Sites by Post Treatment[J]. Angew. Chem. Int. Ed., 2020,59(44):19478-19486. doi: 10.1002/anie.202002416

    26. [26]

      Emeis C A. Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts[J]. J. Catal., 1993,141(2):347-354. doi: 10.1006/jcat.1993.1145

    27. [27]

      Zhang L, Chen K Z, Chen B H, White J L, Resasco D E. Factors that Determine Zeolite Stability in Hot Liquid Water[J]. J. Am. Chem. Soc., 2015,137(36):11810-11819. doi: 10.1021/jacs.5b07398

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

Metrics
  • PDF Downloads(5)
  • Abstract views(811)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return