Citation: Yang-Zheng CAO, Wei PAN, Chuan-Jiang ZHOU, Jun-Yong ZHANG, Hao XU, Chun-Hua GONG, Hui-Ting XU, Run-Pu SHEN, Sui-Jun LIU, Jing-Li XIE. A Series of Metal-Organic Frameworks Based on Mixed Ligand Strategy: Synthesis, Structures, and Properties[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2143-2153. doi: 10.11862/CJIC.2022.229 shu

A Series of Metal-Organic Frameworks Based on Mixed Ligand Strategy: Synthesis, Structures, and Properties

Figures(9)

  • Taking advantage of a basic ligand (BPCH=2, 6 -bis(4-pyridyl methylidene)cyclohexanone) and three acid ligands (H2TP=terephthalic acid, H2IP=isophthalic acid, H3TMA=1, 3, 5 - benzenetricarboxylic acid), seven metal - organic frameworks (MOFs) 1-7 have been achieved by using this acid - base mixed - ligand synthetic strategy. These complexes were characterized by single-crystal X-ray diffraction, IR spec- tra, powder X-ray diffraction, and thermogravimetric analysis. Diverse 3D structural characters of MOFs 1-3 or 2D structural characters of MOFs 4-7 have been observed. The fluorescence properties of these complexes have been explored, indicating that they had selectivity towards Fe3+ ions. Several complexes had shown certain performance for adsorbing dye molecules.
  • 加载中
    1. [1]

      Oisaki K, Li Q, Furukawa H, Czaja A U, Yaghi O M. A Metal-Organic Framework with Covalently Bound Organometallic Complexes[J]. J. Am. Chem. Soc., 2010,132:9262-9264. doi: 10.1021/ja103016y

    2. [2]

      Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers[J]. Angew. Chem. Int. Ed., 2004,43:2334-2375. doi: 10.1002/anie.200300610

    3. [3]

      Peng P, Li F F, Neti V S P K, Metta-Magana A J, Echegoyen L. Design, Synthesis, and X-ray Crystal Structure of a Fullerene-Linked Metal-Organic Framework[J]. Angew. Chem. Int. Ed., 2014,53:160-163. doi: 10.1002/anie.201306761

    4. [4]

      Wang X N, Zhang P, Kirchon A, Li J L, Chen W M, Zhao Y M, Li B, Zhou H C. Crystallographic Visualization of Postsynthetic Nickel Clusters into Metal-Organic Framework[J]. J. Am. Chem. Soc., 2019,141:13654-13663. doi: 10.1021/jacs.9b06711

    5. [5]

      Xiao J D, Jiang H L. Metal -Organic Frameworks for Photocatalysis and Photothermal Catalysis[J]. Acc. Chem. Res., 2019,52:356-366. doi: 10.1021/acs.accounts.8b00521

    6. [6]

      Yoon M, Srirambalaji R, Kim K. Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis[J]. Chem. Rev., 2012,112:1196-1231. doi: 10.1021/cr2003147

    7. [7]

      Li H, Wang K C, Sun Y J, Lollar C T, Li J L, Zhou H C. Recent Advances in Gas Storage and Separation Using Metal-Organic Frameworks[J]. Mater. Today, 2018,21:108-121. doi: 10.1016/j.mattod.2017.07.006

    8. [8]

      Li J, Jiang L, Chen S, Kirchon A, Li B, Li Y, Zhou H C. Metal-Organic Framework Containing Planar Metal-Binding Sites: Efficiently and Cost-Effectively Enhancing the Kinetic Separation of C2H2/C2H4[J]. J. Am. Chem. Soc., 2019,141:3807-3811. doi: 10.1021/jacs.8b13463

    9. [9]

      Mi X N, Sheng D F, Yu Y, Wang Y H, Zhao L M, Lu J, Li Y W, Li D C, Dou J M, Duan J G, Wang S N. Tunable Light Emission and Multiresponsive Luminescent Sensitivities in Aqueous Solutions of Two Series of Lanthanide Metal-Organic Frameworks Based on Structurally Related Ligands[J]. ACS Appl. Mater. Interfaces, 2019,11:7914-7926. doi: 10.1021/acsami.8b18320

    10. [10]

      Yang X G, Ma L F, Yan D P. Facile Synthesis of 1D Organic-Inorganic Perovskite Micro-belts with High Water Stability for Sens-ing and Photonic Applications[J]. Chem. Sci., 2019,10:4567-4572. doi: 10.1039/C9SC00162J

    11. [11]

      Zhao F, Guo X Y, Dong Z P, Liu Z L, Wang Y Q. 3D Ln-MOFs: Slow Magnetic Relaxation and Highly Sensitive Luminescence Detection of Fe3+ and Ketones[J]. Dalton Trans., 2018,47:8972-8982. doi: 10.1039/C8DT01034J

    12. [12]

      Wang H Y, Ge J Y, Hua C, Jiao C Q, Wu Y, Leong C F, D'Alessandro D M, Liu T, Zuo J L. Photo-and Electronically Switchable Spin-Crossover Iron(Ⅱ) Metal-Organic Frameworks Based on a Tetrathia-fulvalene Ligand[J]. Angew. Chem. Int. Ed., 2017,56:5465-5470. doi: 10.1002/anie.201611824

    13. [13]

      Coronado E, Espallargas G M. Dynamic Magnetic MOFs[J]. Chem. Soc. Rev., 2013,42:1525-1539. doi: 10.1039/C2CS35278H

    14. [14]

      Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K. Metal-Organic Frameworks: Functional Luminescent and Photonic Materials for Sensing Applications[J]. Chem. Soc. Rev., 2017,46:3242-3285.

    15. [15]

      Easun T L, Jia J, Calladine J A, Blackmore D L, Stapleton C S, Vuong K Q, Champness N R, George M W. Photochemistry in a 3D Metal-Organic Framework (MOF): Monitoring Intermediates and Reactivity of the fac -to-mer Photoisomerization of Re(diimine)(CO)3Cl Incorporated in a MOF[J]. Inorg. Chem., 2014,53:2606-2612. doi: 10.1021/ic402955e

    16. [16]

      Zou J Y, Li L, You S Y, Chen K H, Dong X N, Chen Y H, Cui J Z. A usf Zinc(Ⅱ) Metal -Organic Framework as a Highly Selective Luminescence Probe for Acetylacetone Detection and Its Postsynthetic Cation Exchange[J]. Cryst. Growth Des., 2018,18:3997-4003. doi: 10.1021/acs.cgd.8b00344

    17. [17]

      Huang R W, Wei Y S, Dong X Y, Wu X H, Du C X, Zang S Q, Mak T C W. Hypersensitive Dual-Function Luminescence Switching of a Silver-Chalcogenolate Cluster -Based Metal -Organic Framework[J]. Nat. Chem., 2017,9:689-697. doi: 10.1038/nchem.2718

    18. [18]

      Huang W, Hu G B, Yao L Y, Yang Y, Liang W B, Yuan R, Xiao D R. Matrix Coordination-Induced Electrochemiluminescence Enhancement of Tetraphenylethylene-Based Hafnium Metal-Organic Framework: An Electrochemiluminescence Chromophore for Ultrasensitive Electrochemiluminescence Sensor Construction[J]. Anal. Chem., 2020,92:3380-3387.

    19. [19]

      Du M, Li C P, Liu C S, Fang S M. Design and Construction of Coordination Polymers with Mixed -Ligand Synthetic Strategy[J]. Coord. Chem. Rev., 2013,257:1282-1305.

    20. [20]

      Yin Z, Zhou Y L, Zeng M H, Kurmoo M. The Concept of Mixed Organic Ligands in Metal-Organic Frameworks: Design, Tuning and Functions[J]. Dalton Trans., 2015,44:5258-5275.

    21. [21]

      Bhattacharyya S, Maji T K. Multi-Dimensional Metal-Organic Frameworks Based on Mixed Linkers: Interplay between Structural Flexibility and Functionality[J]. Coord. Chem. Rev., 2022,469214645.

    22. [22]

      Zhang Y J, Gao L L, Zhou W D, Wei X Q, Hu T P. Synthesis and Magnetic Properties of Two Mn-based Coordination Polymers Constructed by a Mixed-Ligand Strategy[J]. CrystEngComm, 2020,22:7123-7128.

    23. [23]

      Yu G H, Yang C L, Zhao H L, Yu A X, Zhang G, Du D Y, Su Z M. Mixed-Linker Strategy for the Construction of Metal-Organic Framework Combined with Dyes toward Alcohol Detection[J]. Inorg. Chem., 2022,61:5318-5325.

    24. [24]

      Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    25. [25]

      Spek A L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors[J]. Acta Crystallogr. Sect. C, 2015,C71:9-18.

    26. [26]

      Zhao D, Liu X H, Zhao Y, Wang P, Liu Y, Azam M, Al-Resayes S I, Lu Y, Sun W Y. Luminescent Cd(Ⅱ)-Organic Frameworks with Chelating NH2 Sites for Selective Detection of Fe(Ⅲ) and Antibiotics[J]. J. Mater. Chem. A, 2017,5:15797-15807.

    27. [27]

      Wang Y, Xu P, Xie Q, Ma Q Q, Meng Y H, Wang Z W, Zhang S, Zhao X J, Chen J, Wang Z L. Cadmium(Ⅱ)-Triazole Framework as a Luminescent Probe for Ca2+ and Cyano Complexes[J]. Chem. Eur. J., 2016,22:10459-10474.

    28. [28]

      Liu W L, Yu J H, Jiang J H, Yuan L M, Xu B, Liu Q A, Qu B T, Zhang G Q, Yan C G. Hydrothermal Syntheses, Structures and Luminescent Properties of Zn(Ⅱ) Coordination Polymers Assembled with Benzene-1, 2, 3-Tricarboxylic Acid Involving In Situ Ligand Reactions[J]. CrystEngComm, 2011,13:2764-2773.

    29. [29]

      Xu H, Zeng X H, Pan W, Zhang J Y, Cao Y Z, Guo H Y, Xie J L. Structural Diversity of Metal-Organic Frameworks Based on a Chalcone Dicarboxylic Acid Ligand[J]. Dalton Trans., 2020,49:5783-5786.

    30. [30]

      Pan W, Gong C H, Zeng X H, Hu C Y, Zhang Y, Zhu D R, Xu H, Guo H Y, Zhang J Y, Xie J L. Assembly of Porous Lanthanide Metal-Organic Frameworks Constructed by Chalcone Dicarboxylic Acid and Exploration of Their Properties[J]. Polyhedron, 2019,169:24-31.

    31. [31]

      PAN W, MA C X, ZHOU C J, ZHANG L, ZHANG J Y, SHI Y B, XU H, ZHU D R, XIE J L. Synthesis and Characterization of Metal-Organic Framework Based on 2, 6-Bis(4-carboxybenzylidene)cyclo-hexanone[J]. Chinese J. Inorg. Chem., 2021,37(5):953-960.  

    32. [32]

      Zhang J Y, Gong C H, Zeng X H, Xie J L. Continuous Flow Chemistry: New Strategies for Preparative Inorganic Chemistry[J]. Coord. Chem. Rev., 2016,324:39-53.

    33. [33]

      Zhang J Y, Chang S Q, Suryanto B H R, Gong C H, Zeng X H, Zhao C, Zeng Q D, Xie J L. Efficient Synthesis of Ir-Polyoxometalate Cluster Using a Continuous Flow Apparatus and STM Investigation of Its Coassembly Behavior on HOPG Surface[J]. Inorg. Chem., 2016,55:5585-5591.

    34. [34]

      Gong C H, Zhang J Y, Zeng X H, Xie J L. Highly Effective Synthesis of a Cobalt(Ⅱ) Metal-Organic Coordination Polymer by Using Continuous Flow Chemistry[J]. Dalton Trans., 2017,46:25-28.

    35. [35]

      Xie J L, Zhao D Y. Continuous-Flow Photochemistry: An Expanding Horizon of Sustainable Technology[J]. Chin. Chem. Lett., 2020,31:2395-2400.

  • 加载中
    1. [1]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    2. [2]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    5. [5]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    6. [6]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    7. [7]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    11. [11]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    12. [12]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    13. [13]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    14. [14]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    15. [15]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    16. [16]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    17. [17]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    18. [18]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    19. [19]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    20. [20]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

Metrics
  • PDF Downloads(10)
  • Abstract views(586)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return