Citation: Chun-Hua BAI, Huan-Jian HOU, Xiao-Ning YANG, Guang-Hui LI. Fluorescence and Biomineralization Ability of Erbium-Doped Hydroxyapatite[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2154-2164. doi: 10.11862/CJIC.2022.224 shu

Fluorescence and Biomineralization Ability of Erbium-Doped Hydroxyapatite

  • Corresponding author: Guang-Hui LI, ligh@imust.edu.cn
  • Received Date: 21 March 2022
    Revised Date: 5 September 2022

Figures(11)

  • Erbium - doped hydroxyapatite (Er - HAP) particles were prepared by the co - precipitation method. The crystal structure, surface chemical composition, and fluorescent properties of Er-HAP particles were characterized by the methods of X- ray diffraction combined with Materials Studio, scanning electron microscopy-energy dispersive spectroscopy, X - ray photoelectron spectroscopy, and fluorescence spectroscopy. The results showed that Er3+ can competitively substitute for a Ca2+ site in the crystal lattice. Under the excitation of a 340 nm light source, Er-HAP particles emitted significant fluorescence at around 419 nm (purple), 458 nm (blue), 501 nm (green), and 535 nm (green), respectively. The four corresponding luminescence bands are attributed to 4F3/24I15/2, 4F5/24I15/2, 4F7/2 →4I15/2, and 4S3/2 → 4I15/2 transition states, respectively. Further, we evaluated the biomineralization ability by analyzing the formation of an interfacial layer after Er-HAP particles were immersed in simulated body fluid. When the dopant content (molar fraction) of Er3+ was 1%, it was observed that Er-HAP particles could form the mineralized layer with plate-like structures, and Er3+ incorporation affected the biomineralization ability, whereas the biomineralization rate and osteogenic performance significantly decreased with the increasing of the dopant content of Er3+. Therefore, the stronger biomineralization ability of Er-HAP particles might be exhibited while the Er dopant content was about 1%.
  • 加载中
    1. [1]

      Wang X G, Yu Y M, Ji L L, Geng Z, Wang J, Liu C S. Calcium Phosphate-Based Materials Regulate Osteoclast-Mediated Osseointegration[J]. Bioact. Mater., 2021,6(12):4517-4530. doi: 10.1016/j.bioactmat.2021.05.003

    2. [2]

      Alshemary A Z, Akram M, Goh Y F, Kadir M R A, Abdolahi A, Hussain R. Structural Characterization, Optical Properties and In Vitro Bioactivity of Mesoporous Erbium-Doped Hydroxyapatite[J]. J. Alloy. Compd., 2015,645:478-486. doi: 10.1016/j.jallcom.2015.05.064

    3. [3]

      Cheng K, Zhang S, Weng W J. The F Content in Sol-Gel Derived FHA Coatings: An XPS Study[J]. Surf. Coat. Technol., 2004,198(1):237-241.

    4. [4]

      Neacsu I A, Stoica A E, Vasile B S, Andronescu E. Luminescent Hydroxyapatite Doped with Rare Earth Elements for Biomedical Applications[J]. Nanomaterials, 2019,9(2)239. doi: 10.3390/nano9020239

    5. [5]

      Li Y, Ooi C P, Cheang P H N, Khor K A. Synthesis and Characterization of Neodymium and Gadolinium -Substituted Hydroxyapatite as Biomaterials[J]. Int. J. Appl. Ceram. Technol., 2019,6(4):501-512.

    6. [6]

      Heng C N, Zhou X, Zheng X Y, Liu M Y, Wen Y Q, Huang H Y, Fan D D, Hui J F, Zhang X Y, Wei Y. Surface Grafting of Rare-Earth Ions Doped Hydroxyapatite Nanorods (HAp: Ln(Eu/Tb)) with Hydrophilic Copolymers Based on Ligand Exchange Reaction: Biological Imaging and Cancer Treatment[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2018,91:556-563. doi: 10.1016/j.msec.2018.05.079

    7. [7]

      LIU L, DAI J Q, ZHI Q, WANG H L. Research Progress of Rare Earth Damage to Human Health[J]. China Occupational Medicine, 2019,46(5):625-627.  

    8. [8]

      ZHANG J C, LI X X, XU S J, WANG K, YU S F, LIN Q. Effects of Rare Earth Ions on the Proliferation, Differentiation and Functional Expression of Osteoblasts Cultured In Vitro[J]. Progress in Natural Science, 2004,14(4):46-51.  

    9. [9]

      Zaichick S, Zaichick V, Karandashev V, Nosenko S. Accumulation of Rare Earth Elements in Human Bone within the Lifespan[J]. Metallomics, 2011,3(2):186-194. doi: 10.1039/C0MT00069H

    10. [10]

      TAO T T, WANG J X, DONG X Y, YU W S, LI Q L. Preparation and Cytotoxicity of HA: RE (RE=Eu3+, Tb3+) Nanorods[J]. J. Inorg. Mater., 2013,28(5):557-560.  

    11. [11]

      MA M, LU W P, CAO X F, MAO K Y, GUO Y C. Luminescent and Cytotoxic Characteristics of an Ellipsoidal and Microsized Europium (Eu)-Doped Hydroxyapatite[J]. J. Inorg. Mater., 2016,31(8):890-896.  

    12. [12]

      Elmadani E, Jha A, Perali T, Jappy C, Walsh D, Leburn C, Brown T, Sibbett W, Duggal M, Toumba J. Characterization of Rare-Earth Oxide Photoactivated Calcium Phosphate Minerals for Resurfacing Teeth[J]. J. Am. Ceram. Soc., 2012,95(9):2716-2724. doi: 10.1111/j.1551-2916.2012.05324.x

    13. [13]

      Idris N M, Gnanasammandhan M K, Zhang J, Ho P C, Mahendran R, Zhang Y. In Vivo Photodynamic Therapy Using Upconversion Nanoparticles as Remote Controlled Nanotransducers[J]. Nat. Med., 2012,18(10):1580-1585. doi: 10.1038/nm.2933

    14. [14]

      Yang Y, Sun Y, Cao T Y, Peng J J, Liu Y, Wu Y Q, Feng W, Zhang Y J, Li F Y. Hydrothermal Synthesis of NaLuF4: 153Sm, Yb, Tm Nanoparticles and Their Application in Dual-Modality Upconversion Luminescence and SPECT Bioimaging[J]. Biomaterials, 2013,34(3):774-783. doi: 10.1016/j.biomaterials.2012.10.022

    15. [15]

      Xing H Y, Bu W B, Zhang S J, Zheng X P, Li M, Chen F, He Q J, Zhou L P, Peng W J, Hua W Q, Shi J L. Multifunctional Nanoprobes for Upconversion Fluorescence, MR and CT Trimodal Imaging[J]. Biomaterials, 2012,33(4):1079-1089. doi: 10.1016/j.biomaterials.2011.10.039

    16. [16]

      Gu Y W, Khor K A, Cheang P. Bone -like Apatite Layer Formation on Hydroxyapatite Prepared by Spark Plasma Sintering (SPS)[J]. Biomaterials, 2004,25(18):4127-4134. doi: 10.1016/j.biomaterials.2003.11.030

    17. [17]

      Mandal S, Dey A, Pal U. Low Temperature Wet-Chemical Synthesis of Spherical Hydroxyapatite Nanoparticles and Their In Situ Cytotoxicity Study[J]. Adv. Nano Res., 2016,4(4):295-307. doi: 10.12989/anr.2016.4.4.295

    18. [18]

      Mondal S, Nguyen V T, Park S, Choi J, Tran L H, Yi M, Shin J H, Lee C Y, Oh J. Bioactive, Luminescent Erbium-Doped Hydroxyapatite Nanocrystals for Biomedical Applications[J]. Ceram. Int., 2020,46(10):16020-16031. doi: 10.1016/j.ceramint.2020.03.152

    19. [19]

      HONG J, LU Y M, GONG C H, BEN Y G. Preparation and Characterization of Hydroxyapatite/Chitosan Composite Microspheres[J]. Journal of Guangdong Pharmaceutical University, 2021,37(5):1-5.  

    20. [20]

      Yang H W, Xia K D, Wang T L, Niu J C, Song Y M, Xiong Z Q, Zheng K, Wei S Q, Lu W. Growth, In Vitro Biodegradation and Cytocompatibility Properties of Nano-Hydroxyapatite Coatings on Biodegradable Magnesium Alloys[J]. J. Alloy. Compd., 2016,672:366-373. doi: 10.1016/j.jallcom.2016.02.156

    21. [21]

      Yigit O, Ozdemir N, Dikici B, Kaseem M. Surface Properties of Graphene Functionalized TiO2/nHA Hybrid Coatings Made on Ti6Al7Nb Alloys via Plasma Electrolytic Oxidation (PEO)[J]. Molecules, 2021,26(13)3903. doi: 10.3390/molecules26133903

    22. [22]

      Ebrahimi M, Botelho M G, Dorozhkin S V. Biphasic Calcium Phosphates Bioceramics (HA/TCP): Concept, Physicochemical Properties and the Impact of Standardization of Study Protocols in Biomaterials Research[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2017,71:1293-1312. doi: 10.1016/j.msec.2016.11.039

    23. [23]

      Dikici B, Niinomi M, Topuz M, Koc S G, Nakai M. Synthesis of Biphasic Calcium Phosphate (BCP) Coatings on β-Type Titanium Alloys Reinforced with Rutile-TiO2 Compounds: Adhesion Resistance and In-Vitro Corrosion[J]. J. Sol-Gel Sci. Technol., 2018,87:713-724. doi: 10.1007/s10971-018-4755-2

    24. [24]

      LIAO J G, ZANG L, ZOU Y, WANG Y L, LI Y B. Study on Surface Properties of Nano -Hydroxyapatite Modified by Stearic Acid[J]. Chinese J. Inorg. Chem., 2009,25(7):1267-1273. doi: 10.3321/j.issn:1001-4861.2009.07.023

    25. [25]

      Amedlous A, Amadine O, Essamlali Y, Maati H, Semlal N, Zahouily M. Copper Loaded Hydroxyapatite Nanoparticles as Eco-Friendly Fenton-like Catalyst to Effectively Remove Organic Dyes[J]. J. Environ. Chem. Eng., 2021,9(4)115501.

    26. [26]

      Murugesan M, Krishnamurthy V, Hebalkar N, Devanesan M, Nagamony P, Palaniappan M, Krishnaswamy S, Yuan A H. Nano-Hydroxyapatite (Hap) and Hydroxyapatite/Platinum (HAp/Pt) Core Shell Nanorods: Development, Structural Study, and Their Catalytic Activity[J]. Can. J. Chem. Eng., 2020,99(1):268-280.

    27. [27]

      Anirudhan T S, Shainy F, Sekhar V C, Athira V S. Highly Efficient Photocatalytic Degradation of Chlorpyrifos in Aqueous Solutions by Nano Hydroxyapatite Modified CFGO/ZnO Nanorod Composite[J]. J. Photochem. Photobiol. A, 2021,418113333. doi: 10.1016/j.jphotochem.2021.113333

    28. [28]

      Soliman H, Pu S M, Zhang W T, Makhlouf A S, Wan G J. Deposition of Anti-corrosion Hybrid Film of Hexamethylene Diaminetetrakis (Methylene Phosphonic Acid)/Hydroxyapatite on Biodegradable Mg: Influence of Deposition Procedures[J]. Surf. Coat. Technol., 2020,402126242. doi: 10.1016/j.surfcoat.2020.126242

    29. [29]

      HUANG Z H, WAN Y Z, ZHU X B, ZHANG Q C, YANG Z W, LUO H L. Effect of Modified Agent on Properties of Nanoscale Hydroxyapatite/Polylactic Acid Composites[J]. Acta Materiae Compositae Sinica, 2021,38(3):749-760.  

    30. [30]

      Mahraz Z A S, Sahar M R, Ghoshal S K, Dousti M R. Concentration Dependent Luminescence Quenching of Er3+-Doped Zinc Boro -Tellurite Glass[J]. J. Lumin., 2013,144(6):139-145.

    31. [31]

      Li L, Tang X H, Jiang Z Q, Zhou X J, Jiang S, Luo X B, Xiang G T, Zhou K N. NaBaLa 2 (PO 4)3: A Novel Host Lattice for Sm3+-Doped Phosphor Materials Emitting Reddish-Orange Light[J]. J. Alloy. Compd., 2017,701:515-523. doi: 10.1016/j.jallcom.2017.01.171

    32. [32]

      Guo Q F, Wang Q D, Jiang L W, Liao L B, Liu H K, Mei L F. A Novel Apatite, Lu5(SiO4) 3N: (Ce, Tb), Phosphor Material: Synthesis, Structure and Applications for NUV -LEDs[J]. Phys. Chem. Chem. Phy., 2016,18(23):15545-15554. doi: 10.1039/C6CP01512C

    33. [33]

      Deliormanli A M, Rahman B, Oguzlar S, Ertekin K. Structural and Luminescent Properties of Er3+ and Tb3+ -Doped Sol-Gel-Based Bioactive Glass Powders and Electrospun Nanofibers[J]. J. Mater. Sci., 2021,56(26):14487-14504. doi: 10.1007/s10853-021-06203-7

    34. [34]

      Ahmad N, Khan S. Effect of (Mn-Co) Co-doping on the Structural, Morphological, Optical, Photoluminescence and Electrical Properties of SnO2[J]. J. Alloy. Compd., 2017,720(5):502-509.

    35. [35]

      ZHU Q X, SONG J P, LIAN A M, LUO M H. Effect of Carbonate Substitution on the Mineralization of Apatite Blocks and Coatings[J]. Bulletin of the Chinese Ceramic Society, 2019,38(12):3959-3963.  

    36. [36]

      Hirayama B, Anada T, Shiwaku Y, Miyatake N, Tsuchiya K, Nakamura M, Takahashi T, Suzuki O. Immune Cell Response and Subsequent Bone Formation Induced by Implantation of Octacalcium Phosphate in a Rat Tibia Defect[J]. RSC Adv., 2016,6:S7475-S7484.

    37. [37]

      Simon P, Gruner D, Worch H, Pompe W, Lichte H, El Khassawna T, Heiss C, Wenisch S, Kniep R. First Evidence of Octacalcium Phosphate@Osteocalcin Nanocomplex as Skeletal Bone Component Directing Collagen Triple-Helix Nanofibril Mineralization[J]. Sci. Rep., 2018,8(1)13696.

    38. [38]

      Okuyama K, Shiwaku Y, Hamai R, Mizoguchi T, Tsuchiya K, Takahashi T, Suzuki O. Differentiation of Committed Osteoblast Progenitors by Octacalcium Phosphate Compared to Calcium-Deficient Hydroxyapatite in Lepr-cre/Tomato Mouse Tibia[J]. Acta Biomater., 2022,142:332-344.

    39. [39]

      SHEN J F, CHANG C K, MAO D L, WU J S. Preparation and Characterization of Hydroxyapatite Coating Materials[J]. J. Inorg. Mater., 2001,16(5):993-998.  

  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    20. [20]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

Metrics
  • PDF Downloads(2)
  • Abstract views(742)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return