Citation: Qiang XIA, Xiao-Gang LIAO, Hai-Li SHEN, Lin ZHENG, Gang LI, Tian TIAN. Co3O4 with Different Morphologies: Synthesis and Performances in Activating Peroxymonosulfate for Methylene Blue Degradation[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2191-2201. doi: 10.11862/CJIC.2022.221 shu

Co3O4 with Different Morphologies: Synthesis and Performances in Activating Peroxymonosulfate for Methylene Blue Degradation

  • Corresponding author: Gang LI, ligang2015@cqut.edu.cn
  • Received Date: 12 April 2022
    Revised Date: 6 September 2022

Figures(10)

  • Three methods (urea hydrothermal-calcination, chemical bath deposition-calcination, and oxalate pyrolysis) were used to prepare Co3O4 powder materials with different morphologies, which were named Co3O4-A, Co3O4-B, and Co3O4-C, respectively. All of them were taken as catalysts to activate peroxymonosulfate (PMS) for the degradation of methylene blue (MB). It is found that these Co3O4 materials were quite different in their catalytic performance. Under the assistance of Co3O4-A, Co3O4-B, and Co3O4-C, the PMS decomposition reaction rate constants were measured as 0.047 1, 0.217 4, and 0.003 7 min-1, while the degradation ratios of MB were 91.25% (reaction time: 50 min), 100.00% (reaction time: 25 min), and 31.55% (reaction time: 50 min), respectively. That is, Co3O4-B had the best catalytic performance. To make clear the difference in the catalytic ability of Co3O4, a series of characterizations were carried out. It is discovered that these Co3O4 materials are different in many ways such as crystallinity, microstructure, specific surface area, surface oxygen vacancy concentration, and surface hydroxyl density. And it is confirmed that the primary factor influencing the catalytic performance of Co3O4 is the surface hydroxyl density. In addition, the optimized parameters for MB degradation in the Co3O4-B/PMS reaction system were determined as follows: reaction temperature 25 ℃, catalyst dosage 0.02 g·L-1, and PMS dosage 0.6 mmol·L-1, where the MB degradation ratio was as high as 98.33%. Moreover, the reactive oxygen species ·SO4-, ·OH, ·O2- and 1O2 were all detected in the Co3O4-B/PMS system according to the quenching experiments and electron paramagnetic resonance tests, and sulfate radicals were identified as the primary reactive oxygen species.
  • 加载中
    1. [1]

      Oh W D, Chang V W C, Hu Z T, Goei R, Lim T T. Enhancing the Catalytic Activity of g-C3N4 through Me Doping (Me=Cu, Co and Fe) for Selective Sulfathiazole Degradation via Redox-Based Advanced Oxidation Process[J]. Chem. Eng. J., 2017,323:260-269. doi: 10.1016/j.cej.2017.04.107

    2. [2]

      Hu P D, Long M C. Cobalt-Catalyzed Sulfate Radical-Based Advanced Oxidation: A Review on Heterogeneous Catalysts and Applications[J]. Appl. Catal. B-Environ., 2016,181:103-117. doi: 10.1016/j.apcatb.2015.07.024

    3. [3]

      Zhang A Y, He Y Y, Chen Y P, Feng J W, Huang N H, Lian F. Degradation of Organic Pollutants by Co3O4 - Mediated Peroxymonosulfate Oxidation: Roles of High-Energy {001}-Exposed TiO2 Support[J]. Chem. Eng. J., 2018,334:1430-1439. doi: 10.1016/j.cej.2017.11.078

    4. [4]

      Wang Q, Xu Z T, Cao Y T, Chen Y Q, Du X, Yang Y, Wang Z H. Two- Dimensional Ultrathin Perforated Co3O4 Nanosheets Enhanced PMS- Activated Selective Oxidation of Organic Micropollutants in Environmental Remediation[J]. Chem. Eng. J., 2022,427131953. doi: 10.1016/j.cej.2021.131953

    5. [5]

      Anipsitakis G P, Stathatos E. Heterogeneous Activation of Oxone Using Co3O4[J]. J. Phys. Chem. B, 2005,109:13052-13055. doi: 10.1021/jp052166y

    6. [6]

      Chen X Y, Chen J W, Qiao X L, Wang D G, Cai X Y. Performance of Nano-Co3O4/Peroxymonosulfate System: Kinetics and Mechanism Study Using Acid Orange 7 as a Model Compound[J]. Appl. Catal. B - Environ., 2008,80:116-121. doi: 10.1016/j.apcatb.2007.11.009

    7. [7]

      Liang J P, Fu L. Activation of Peroxymonosulfate(PMS) by Co3O4 Quantum Dots Decorated Hierarchical C@Co3O4 for Degradation of Organic Pollutants: Kinetics and Radical - Nonradical Cooperation Mechanisms[J]. Appl. Surf. Sci., 2021,563150335. doi: 10.1016/j.apsusc.2021.150335

    8. [8]

      CHEN T M, CHEN H M, MA H Y, TANG K X, ZHAO Y W. Biochar- Co3O4 Composite Activates Peroxymonosulfate to Degrade Atrazine[J]. China Environmental Science, 2020,40(11):4786-4794. doi: 10.3969/j.issn.1000-6923.2020.11.018

    9. [9]

      Liu B M, Song W B, Wu H X, Liu Z Y, Teng Y, Sun Y J, Xu Y H, Zheng H L. Degradation of Norfloxacin with Peroxymonosulfate Activated by Nanoconfinement Co3O4@CNT Nanocomposite[J]. Chem. Eng. J., 2020,398125498. doi: 10.1016/j.cej.2020.125498

    10. [10]

      Xu H D, Zhang Y C, Li J J, Hao Q Q, Li X, Liu F H. Heterogeneous Activation of Peroxymonosulfate by a Biochar-Supported Co3O4 Composite for Efficient Degradation of Chloramphenicols[J]. Environ. Pollut., 2020,257113610. doi: 10.1016/j.envpol.2019.113610

    11. [11]

      Wang Z M, Wang Z H, Li W, Lan Y Q, Chen C. Performance Comparison and Mechanism Investigation of Co3O4 - Modified Different Crystallographic MnO2 (α, β, γ, and δ) as an Activator of Peroxymonosulfate(PMS) for Sulfisoxazole Degradation[J]. Chem. Eng. J., 2022,427130888. doi: 10.1016/j.cej.2021.130888

    12. [12]

      Zhang H X, Wang J N, Zhang X Y, Li B, Cheng X W. Enhanced Removal of Lomefloxacin Based on Peroxymonosulfate Activation by Co3O4/δ-FeOOH Composite[J]. Chem. Eng. J., 2019,369:834-844. doi: 10.1016/j.cej.2019.03.132

    13. [13]

      LIU M, HU L M, ZHANG G S, WANG P. Activation of Peroxymonosulfate by the Co/Zn Bimetallic Oxide for the Degradation of Bisphenol A[J]. Environmental Chemistry, 2018,37(4):753-760.  

    14. [14]

      Zhao L L, Zhang J M, Zhang Z P, Wei T, Wang J, Ma J, Ren Y M, Zhang H X. Co3O4 Crystal Plane Regulation to Efficiently Activate Peroxymonosulfate in Water: The Role of Oxygen Vacancies[J]. J. Colloid Interface Sci., 2022,623:520-531. doi: 10.1016/j.jcis.2022.05.045

    15. [15]

      Li X N, Rykov A I, Zhang B, Zhangc Y J, Wang J H. Graphene Encapsulated FexCoy Nanocages Derived from Metal-Organic Frameworks as Efficient Activators for Peroxymonosulfate[J]. Catal. Sci. Technol., 2016,6:7486-7494. doi: 10.1039/C6CY01479H

    16. [16]

      Oh W D, Lua S K, Dong Z L, Lim T K. High Surface Area DPA - Hematite for Efficient Detoxification of Bisphenol A via Peroxymonosulfate Activation[J]. J. Mater. Chem. A, 2014,2:15836-15845. doi: 10.1039/C4TA02758B

    17. [17]

      Wacławek S, Grübel K, Černík M. Simple Spectrophotometric Determination of Monopersulfate[J]. Spectroc. Acta Pt. A - Molec. Biomolec. Spectr., 2015,149:928-933. doi: 10.1016/j.saa.2015.05.029

    18. [18]

      Zhou X Q, Luo C G, Luo M Y, Wang Q L, Wang J, Liao Z W, Chen Z L, Chen Z Q. Understanding the Synergetic Effect from Foreign Metals in Bimetallic Oxides for PMS Activation: A Common Strategy to Increase the Stoichiometric Efficiency of Oxidants[J]. Chem. Eng. J., 2020,381122587. doi: 10.1016/j.cej.2019.122587

    19. [19]

      Zhang T, Li C J, Ma J, Tian H, Qiang Z M. Surface Hydroxyl Groups of Synthetic α-FeOOH in Promoting ·OH Generation from Aqueous Ozone: Property and Activity Relationship[J]. Appl. Catal. B-Environ., 2008,82:131-137. doi: 10.1016/j.apcatb.2008.01.008

    20. [20]

      Wang Z, Wang W Z, Zhang L, Dong J. Surface Oxygen Vacancies on Co 3O4 Mediated Catalytic Formaldehyde Oxidation at Room Temperature[J]. Catal. Sci. Technol., 2016,6:3845-3853. doi: 10.1039/C5CY01709B

    21. [21]

      Wang Z, Shen G L, Li J Q, Liu H D, Wang Q, Chen Y F. Catalytic Removal of Benzene over CeO2 - MnOx Composite Oxides Prepared by Hydrothermal Method[J]. Appl. Catal. B - Environ., 2013,138 - 139:253-259. doi: 10.1016/j.apcatb.2013.02.030

    22. [22]

      Du J K, Bao J G, Liu Y, Kim S H, Dionysiou D D. Facile Preparation of Porous Mn/Fe3O4 Cubes as Peroxymonosulfate Activating Catalyst for Effective Bisphenol A Degradation[J]. Chem. Eng. J., 2019,376119193. doi: 10.1016/j.cej.2018.05.177

    23. [23]

      Wang F F, Xiao M L, Ma X Y, Wu S J, Ge M F, Yu X L. Insights into the Transformations of Mn Species for Peroxymonosulfate Activation by Tuning the Mn3O4 Shapes[J]. Chem. Eng. J., 2021,404127097. doi: 10.1016/j.cej.2020.127097

    24. [24]

      Khan A, Wang H B, Liu Y, Jawad A, Ifthikar J, Liao Z W, Wang T, Chen Z Q. Highly Efficient α-Mn2O3@α-MnO2-500 Nanocomposite for Peroxymonosulfate Activation: Comprehensive Investigation of Manganese Oxides[J]. J. Mater. Chem. A, 2018,6:1590-1600. doi: 10.1039/C7TA07942G

    25. [25]

      Dong Z Y, Zhang Q, Chen B Y, Hong J M. Oxidation of Bisphenol A by Persulfate via Fe3O4-α-MnO2 Nanoflower-like Catalyst: Mechanism and Efficiency[J]. Chem. Eng. J., 2019,357:337-347. doi: 10.1016/j.cej.2018.09.179

    26. [26]

      Gong Y, Zhao X, Zhang H, Yang B, Xiao K, Guo T, Zhang J J, Shao H X, Wang Y B, Yu G. MOF-Derived Nitrogen Doped Carbon Modified g-C3N4 Heterostructure Composite with Enhanced Photocatalytic Activity for Bisphenol A Degradation with Peroxymonosulfate under Visible Light Irradiation[J]. Appl. Catal. B-Environ., 2018,233:35-45. doi: 10.1016/j.apcatb.2018.03.077

    27. [27]

      Yao Y J, Cai Y M, Wu G D, Wei F Y, Li X Y, Chen H, Wang S B. Sulfate Radicals Induced from Peroxymonosulfate by Cobalt Manganese Oxides (CoxMn3-xO4) for Fenton - like Reaction In Water[J]. J. Hazard. Mater., 2015,296:128-137. doi: 10.1016/j.jhazmat.2015.04.014

    28. [28]

      Gao H Y, Huang C H, Mao L, Shao B, Shao J, Yan Z Y, Tang M, Zhu B Z. First Direct and Unequivocal Electron Spin Resonance Spin - Trapping Evidence for pH-Dependent Production of Hydroxyl Radicals from Sulfate Radicals[J]. Environ. Sci. Technol., 2020,54:14046-14056. doi: 10.1021/acs.est.0c04410

    29. [29]

      Shao S, Li X S, Gong Z M, Fan B, Hu J H, Peng J B, Lu K, Gao S X. A New Insight into the Mechanism in Fe3O4@CuO/PMS System with Low Oxidant Dosage[J]. Chem. Eng. J., 2022,438135474. doi: 10.1016/j.cej.2022.135474

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    8. [8]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    9. [9]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    10. [10]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(9)
  • Abstract views(852)
  • HTML views(168)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return