Citation: Jun-Jie SONG, Tong WEI, Chao XU, Hong-Bo JIA, Jun LIU, Hong-Yun DING, Fan HE, Min WANG, Zhi-Kang JIN, Xiang-Bo-Wen DU, Gang WANG, Ren-Hong LI. Magnetic Co/TiB2 for Efficient Catalytic Hydrogen Production from Ammonia Borane and Tandem Degradation of Organic Pollutants at Room Temperature[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2202-2212. doi: 10.11862/CJIC.2022.219 shu

Magnetic Co/TiB2 for Efficient Catalytic Hydrogen Production from Ammonia Borane and Tandem Degradation of Organic Pollutants at Room Temperature

  • Corresponding author: Ren-Hong LI, lirenhong@zstu.edu.cn
  • Received Date: 22 April 2022
    Revised Date: 25 August 2022

Figures(8)

  • TiB2 support was prepared by molten salt method and Co/TiB2 magnetic recyclable nano-catalyst was prepared by simple precipitation-deposition method, which was used for catalytic hydrogen evolution in ammonia borane (NH3BH3) solution at room temperature and synergistic degradation of p-nitrophenol (4-NP) and azo dye such as acid orange 7 (AO7), acid red 1 (AR1), methyl orange (MO), without light, heat, other external energy, and additives. The catalyst was characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy, vibrating sample magnetometer, and other characterization methods. The results showed that Co nanoparticles were uniformly distributed on the surface of TiB2 support, and the grain size was about 40 nm, which was coated by TiB2 support with a typical strong metal-support interaction. Co/TiB2 exhibited excellent catalytic activity for hydrogen evolution from NH3BH3 solution at room temperature, with a rate of hydrogen evolution at 565.8 molH2·molcat-1·h-1. In the cascade reaction of degrading organic pollutants, 4-NP amination was catalyzed by Co/TiB2 with nearly 100% conversion within 7 min, and the reaction rate constant was up to 0.72 min-1. The reaction rate constant of degrading AO7 was the highest among the three azo dyes (0.34 min-1). A large number of hydrogen radicals (·H) was detected in the catalytic system of Co/TiB2/NH3BH3 by EPR-DMPO (EPR=electron paramagnetic resonance, DMPO=5, 5-dimethyl-1-pyrroline N-oxide) free radical capture experiment. Due to the strong reducibility of ·H radical, the catalytic system of Co/TiB2/NH3BH3 can aminate 4-NP into p-aminophenol (4-AP) and reduce the azo chromogen group (—N=N—) in azo dye molecules. At the end of the reaction, the catalyst could be recycled by introducing an external magnetic field to avoid secondary pollution to the water body.
  • 加载中
    1. [1]

      Sun Q M, Wang N, Xu Q, Yu J H. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials[J]. Adv. Mater., 2020,322001818. doi: 10.1002/adma.202001818

    2. [2]

      Marder T B. Will We Soon be Fueling Our Automobiles with Ammonia-Borane?[J]. Angew. Chem. Int. Ed., 2007,46:8116-8118. doi: 10.1002/anie.200703150

    3. [3]

      Huang X Y, Liu Y Y, Wen H, Shen R F, Mehdi S, Wu X L, Liang E J, Guo X J, Li B J. Ensemble-Boosting Effect of Ru-Cu Alloy on Catalytic Activity towards Hydrogen Evolution in Ammonia Borane Hydrolysis[J]. Appl. Catal. B Environ., 2021,287119960. doi: 10.1016/j.apcatb.2021.119960

    4. [4]

      Wang C L, Astruc D. Recent Developments of Nanocatalyzed Liquid-Phase Hydrogen Generation[J]. Chem. Soc. Rev., 2021,50:3437-3484. doi: 10.1039/D0CS00515K

    5. [5]

      Lei W W, Zhang H, Wu Y, Zhang B, Liu D, Qin S, Liu Z W, Ma Y M, Chen Y. Oxygen-Doped Boron Nitride Nanosheets with Excellent Performance in Hydrogen Storage[J]. Nano Energy, 2014,6:219-224. doi: 10.1016/j.nanoen.2014.04.004

    6. [6]

      Yadav M, Xu Q. Liquid-Phase Chemical Hydrogen Storage Materials[J]. Energy Environ. Sci., 2012,5:9698-9725. doi: 10.1039/c2ee22937d

    7. [7]

      Lin L L, Zhou W, Gao R, Yao S Y, Zhang X, Xu W Q, Zheng S J, Jiang Z, Yu Q L, Li Y W, Shi C, Wen X D, Ma D. Low-Temperature Hydrogen Production from Water and Methanol Using Pt/α-MoC Catalysts[J]. Nature, 2017,544:80-83. doi: 10.1038/nature21672

    8. [8]

      Mac D N, Sunny N, Brandon N, Herzog H, Ku A Y, Maas W, Ramirez A, Reiner D M, Sant G N, Shah N. The Hydrogen Economy: A Pragmatic Path forward[J]. Joule, 2021,5:2524-2529. doi: 10.1016/j.joule.2021.09.014

    9. [9]

      Jiang X H, Zhang L S, Liu H Y, Wu D S, Wu F Y, Tian L, Liu L L, Zou J P, Luo S L, Chen B B. Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2020,59:23112-23116. doi: 10.1002/anie.202011495

    10. [10]

      Walsh B, Ciais P, Janssens I A, Penuelas J, Riahi K, Rydzak F, Vuuren D P, Obersteiner M. Pathways for Balancing CO2 Emissions and Sinks[J]. Nat. Commun., 2017,814856. doi: 10.1038/ncomms14856

    11. [11]

      Kang J X, Chen T W, Zhang D F, Guo L. PtNiAu Trimetallic Nanoalloys Enabled by a Digestive-Assisted Process as Highly Efficient Catalyst for Hydrogen Generation[J]. Nano Energy, 2016,23:145-152. doi: 10.1016/j.nanoen.2016.03.017

    12. [12]

      Wang Q, Fu F Y, Yang S, Martinez M M, Ramirez M A, Moya S, Salmon L, Ruiz J, Astruc D. Dramatic Synergy in CoPt Nanocatalysts Stabilized by"Click"Dendrimers for Evolution of Hydrogen from Hydrolysis of Ammonia Borane[J]. ACS Catal., 2018,9:1110-1119.

    13. [13]

      Patel N, Kale A, Miotello A. Improved Dehydrogenation Of Ammonia Borane over Co-P-B Coating on Ni: A Single Catalyst for both Hydrolysis and Thermolysis[J]. Appl. Catal. B-Environ., 2012,111-112:178-184. doi: 10.1016/j.apcatb.2011.09.032

    14. [14]

      Fu F Y, Wang C L, Wang Q, Martinez A M, Escobar A, Chong H B, Wang X, Moya S, Salmon L, Fouquet E, Ruiz J, Astruc D. Highly Selective and Sharp Volcano-Type Synergistic Ni2Pt@ZIF-8-Catalyzed Hydrogen Evolution from Ammonia Borane Hydrolysis[J]. J. Am. Chem. Soc., 2018,140:10034-10042. doi: 10.1021/jacs.8b06511

    15. [15]

      Cui C C, Liu Y Y, Mehdi S, Wen H, Zhou B J, Li J P, Li B J. Enhancing Effect of Fe-Doping on the Activity of Nano Ni Catalyst towards Hydrogen Evolution from NH3BH3[J]. Appl. Catal. B-Environ., 2020,265118612. doi: 10.1016/j.apcatb.2020.118612

    16. [16]

      Zhang X M, Jing L Y, Chang F F, Chen S, Yang H Q, Yang Q H. Positional Immobilization of Pd Nanoparticles and Enzymes in Hierarchical Yolk-Shell@Shell Nanoreactors for Tandem Catalysis[J]. Chem. Commun., 2017,53:7780-7783. doi: 10.1039/C7CC03177G

    17. [17]

      Zou J P, Wu D D, Luo J M, Xing Q J, Luo X B, Dong W H, Luo S L, Du H M, Suib S L. A Strategy for One-Pot Conversion of Organic Pollutants into Useful Hydrocarbons through Coupling Photodegradation of MB with Photoreduction of CO2[J]. ACS Catal., 2016,6:6861-6867. doi: 10.1021/acscatal.6b01729

    18. [18]

      Zhu X H, Du L L, Guo Z W, Chen S, Wu B L, Liu X D, Yan X Q, Takeuchi N, Kobayashi H, Li R H. Tandem Catalysis Induced by Hollow PdO: Highly Efficient H2 Generation Coupled with Organic Dye Degradation via Sodium Formate Reforming[J]. Catal. Sci. Technol., 2018,8:6217-6227. doi: 10.1039/C8CY01551A

    19. [19]

      Zhu X H, Liang S P, Chen S, Liu X D, Li R H. Adsorption Driven Formate Reforming into Hydride and Tandem Hydrogenation of Nitrophenol to Amine over PdOx Catalysts[J]. Catal. Sci. Technol., 2020,10:8332-8338. doi: 10.1039/D0CY01704C

    20. [20]

      ZHU X H, GUO Z W, LIU X D, LI R H, WEI T. Synergistically Catalytic Degradation of Azo Dyes by Ag/MgO[J]. Chinese J. Inorg. Chem., 2021,37:482-490. doi: 10.11862/CJIC.2021.058 

    21. [21]

      Zhu M, Zhang L S, Liu S S, Wang D K, Qin Y C, Chen Y, Dai W L, Wang Y H, Xing Q J, Zou J P. Degradation of 4-Nitrophenol by Electrocatalysis and Advanced Oxidation Processes Using Co3 O4@C Anode Coupled with Simultaneous CO2 Reduction via SnO 2/CC Cathode[J]. Chin. Chem. Lett., 2020,31:1961-1965. doi: 10.1016/j.cclet.2020.01.017

    22. [22]

      Khan S A, Bakhsh E M, Asiri A M, Khan S B. Chitosan Coated Nial Layered Double Hydroxide Microsphere Templated Zero-Valent Metal NPs for Environmental Remediation[J]. J. Clean. Prod., 2021,285:124830-124843. doi: 10.1016/j.jclepro.2020.124830

    23. [23]

      Khan S A, Khan S B, Farooq A, Asiri A M. A Facile Synthesis of CuAg Nanoparticles on Highly Porous ZnO/Carbon Black-Cellulose Acetate Sheets for Nitroarene and Azo Dyes Reduction/Degradation[J]. Int. J. Biol. Macromol., 2019,130:288-299. doi: 10.1016/j.ijbiomac.2019.02.114

    24. [24]

      Khan S B, Khan S A, Marwani H M, Bakhsh E M, Anwar Y, Kamal T, Asiri A M, Akhtar K. Anti-Bacterial PES-Cellulose Composite Spheres: Dual Character toward Extraction and Catalytic Reduction of Nitrophenol[J]. RSC Adv., 2016,6:110077-110090. doi: 10.1039/C6RA21626A

    25. [25]

      Saravanan R, Khan M M, Gupta V K, Mosquera E, Gracia F, Narayanan V, Stenhen A. ZnO/Ag/CdO Nanocomposite for Visible Light-Induced Photocatalytic Degradation of Industrial Textile Effluents[J]. J. Colloid Interface Sci., 2015,452:126-133. doi: 10.1016/j.jcis.2015.04.035

    26. [26]

      Gaini L E, Lakraimi M, Sebbar E, Meghea A, Bakasse M. Removal of Indigo Carmine Dye from Water to Mg-Al-CO3-Calcined Layered Double Hydroxides[J]. J. Hazard. Mater., 2009,161:627-632. doi: 10.1016/j.jhazmat.2008.04.089

    27. [27]

      Li R H, Liu Z Q, Trinh Q T, Miao Z Q, Chen S, Qian K C, Wong R J, Xi S B, Yan Y, Borgna A, Liang S P, Wei T, Dai Y H, Wang P, Tang Y, Yan X Q, Choksi S T, Liu W. Strong Metal-Support Interaction for 2D Materials: Application in Noble Metal/TiB2 Heterointerfaces and Their Enhanced Catalytic Performance for Formic Acid Dehydrogenation[J]. Adv. Mater., 2021,332101536. doi: 10.1002/adma.202101536

    28. [28]

      Li C C, Liu X B, Zhu L, Huang R Z, Zhao M W, Xu L Q, Qian Y T. Conductive and Polar Titanium Boride as a Sulfur Host for Advanced Lithium-Sulfur Batteries[J]. Chem. Mater., 2018,30:6969-6977. doi: 10.1021/acs.chemmater.8b01352

    29. [29]

      Zhang T Y, Wang H J, Guo X D, Shao S H, Ding L, Han A J, Wang L Y, Liu J F. Co@C Nanorods as Both Magnetic Stirring Nanobars and Magnetic Recyclable Nanocatalysts for Microcatalytic Reactions[J]. Appl. Catal. B-Environ., 2022,304120925. doi: 10.1016/j.apcatb.2021.120925

    30. [30]

      Gao L, Li R, Sui X L, Li R, Chen C L, Chen Q W. Conversion of Chicken Feather Waste to N-Doped Carbon Nanotubes for the Catalytic Reduction of 4-Nitrophenol[J]. Environ. Sci. Technol., 2014,48:10191-10197. doi: 10.1021/es5021839

    31. [31]

      Ren X Y, Tang L, Wang J J, Almatrafi E, Feng H P, Tang X, Yu J F, Yang Y, Li X P, Zhou C Y, Zeng Z T, Zeng G M. Highly Efficient Catalytic Hydrogenation of Nitrophenols by Sewage Sludge Derived Biochar[J]. Water Res., 2021,201117360. doi: 10.1016/j.watres.2021.117360

    32. [32]

      Zhang L S, Jiang X H, Zhong Z A, Tian L, Sun Q, Cui Y T, Lu X, Zou J P, Luo S L. Carbon Nitride Supported High-Loading Fe SingleAtom Catalyst for Activation of Peroxymonosulfate to Generate 1O2 with 100% Selectivity[J]. Angew. Chem. Int. Ed., 2021,60:21751-21755. doi: 10.1002/anie.202109488

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    4. [4]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    11. [11]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    12. [12]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    16. [16]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    17. [17]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    20. [20]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

Metrics
  • PDF Downloads(2)
  • Abstract views(1037)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return