Citation: Jia-Hui LIU, Dao-An SUN, Chun-Ying LI, Yong-Mei DU, Zhi-Xuan WANG, Jian LÜ. Effects of Promoters on Polycyclic Hydrocarbon JP-10 Steam Reforming for Hydrogen Production over Ni/γ-Al2O3 Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2412-2422. doi: 10.11862/CJIC.2022.217 shu

Effects of Promoters on Polycyclic Hydrocarbon JP-10 Steam Reforming for Hydrogen Production over Ni/γ-Al2O3 Catalysts

Figures(10)

  • A series of 15%Ni-5%M/γ-Al2O3 catalysts (denoted as NMA, M=Na, Mg, Ce) modified by Alkali metal Na, alkaline-earth metal Mg, and rare earth metal Ce promoters were prepared by the incipient-wetness co-impregnation method. The texture and surface properties of the above catalysts were characterized and analyzed by XRD (X-ray diffraction), N2 adsorption-desorption, H2-TPR (H2-programmed temperature reduction), TEM (transmission electron microscope), NH3-TPD (NH3-programmed temperature desorption), TG (thermogravimetric), and Raman spectrum techniques. Effects of these promoters on the catalytic performance for steam reforming of JP-10 as a representative of polycyclic hydrocarbons were investigated in a micro-channel reactor (length: 300 mm, inner diameter: 4 mm, 304 stainless steel) wash-coated by catalyst slurry from 600 to 750 ℃ with the feeds of exo-tetrahydrodicyclopentadi-enew (JP-10) (0.5 mL·min-1) and deionized water (1.5 mL·min-1). The above catalyst slurry was prepared by fast ball-milling of catalyst powder, deionized water, 25% silica sol binder for 0.5 h, and the resulted catalyst loading was about 0.25 g. The results showed that all the promoters significantly improved the catalytic activity of Ni/γ -Al2O3 catalysts (denoted as NA) and carbon deposition resistance. Among them, the alkali metal promoter Na exhibited the best modification effect overall. It not only reduced the size of nickel grains and total acid amount, improved the dispersibility of nickel active components, and reduced property, but also inhibited the accumulation of nickel in the high-temperature reforming reaction to the maximum extent. Specifically, conversion of JP-10 and H2 selectivity of NNaA catalyst could reach 82.9% and 73.3%, respectively, and the carbon formation was as low as 0.53 mg·gfeed-1 under the reaction conditions of normal pressure, 750 ℃, steam/carbon (S/C) molar ratio of 2.4, and weight hourly space velocity (WHSV) of 472 h-1. After the reaction, most filamentous carbons were observed on catalysts NNaA, while carbon deposits on the other catalysts were mostly amorphous carbons.
  • 加载中
    1. [1]

      Xie H Q, Yu Q B, Lu H, Zhang Y Y, Zhang J R, Qin Q. Thermodynamic Study for Hydrogen Production from Bio-Oil via Sorption-Enhanced Steam Reforming: Comparison with Conventional Steam Reforming[J]. Int. J. Hydrog. Energy, 2017,42:28718-28731. doi: 10.1016/j.ijhydene.2017.09.155

    2. [2]

      QIAO W J, XIAO G P, ZHANG L, QING S J, ZHAO Y Q, GENG Z X, GAO Z X. Catalytic Performance of CuO/La1-xCexCrO3 in the Steam Reforming of Methanol[J]. Journal of Fuel Chemistry and Technology, 2021,49:205-210.

    3. [3]

      Jiao Y, He Z F, Wang J L, Chen Y Q. N-Decane Steam Reforming for Hydrogen Production over Mono- and Bi-metallic Co-Ni/Ce-Al2O3 Catalysts: Structure-Activity Correlations[J]. Energy Convers. Manage., 2017,148:954-962. doi: 10.1016/j.enconman.2017.06.065

    4. [4]

      Sun D A, Du Y M, Wang Z X, Zhang J W, Li Y, Li J Y, Kou L G, Li C Y, Li J W, Feng H, Lu J. Effects of CaO Addition on Ni/CeO2-ZrO2-Al2O3 Coated Monolith Catalysts for Steam Reforming of n-Decane[J]. Int. J. Hydrog. Energy, 2020,45:16421-16431. doi: 10.1016/j.ijhydene.2020.04.126

    5. [5]

      Liu X, Bao C, Zhu Z, Zheng H, Song C, Xu Q. Thermo-Photo Synergic Effect on Methanol Steam Reforming over Mesoporous Cu/TiO2-CeO2 Catalysts[J]. Int. J. Hydrog. Energy, 2021,46:26741-26756. doi: 10.1016/j.ijhydene.2021.05.157

    6. [6]

      Upadhyay M, Lee H, Kim A, Lee S, Lim H. CFD Simulation of Methane Steam Reforming in a Membrane Reactor: Performance Characteristics over Range of Operating Window[J]. Int. J. Hydrog. Energy, 2021,46:30402-30411. doi: 10.1016/j.ijhydene.2021.06.178

    7. [7]

      FANG Z Q, SHI D X, LI H S, WU Q, JIAO Q Z. Recent Progress in the Synthetic Process of Exo-tetrahydrodicyclopentadiene[J]. Fine Chemicals, 2020,37(1):11-19.

    8. [8]

      Li G Y, Hou B L, Wang A Q, Xin X L, Cong Y, Wang X D, Li N, Zhang T. Making JP-10 Superfuel Affordable with a Lignocellulosic Platform Compound[J]. Angew. Chem. Int. Ed., 2019,58:12154-12158. doi: 10.1002/anie.201906744

    9. [9]

      Zhang H C, Xiao Z R, Yang M, Tian Y J, Li G Z, Zhang X W, Liu G Z. Catalytic Steam Reforming of JP-10 over Ni/SBA-15[J]. Int. J. Hydrog. Energy, 2020,45:4284-4296. doi: 10.1016/j.ijhydene.2019.12.049

    10. [10]

      Wang X B, Yang S Q, Xu C, Ma H D, Zhang Z H, Du Z Y, Li W Y. Effect of Boron Doping on the Performance of Ni/Biochar Catalysts for Steam Reforming of Toluene as a Tar Model Compound[J]. J. Anal. Appl. Pyrolysis, 2021,155105033. doi: 10.1016/j.jaap.2021.105033

    11. [11]

      Zhou S Y, Chen Z Z, Gong H J, Wang X S, Zhu T T, Zhou Y C. Low-Temperature Catalytic Steam Reforming of Toluene as a Biomass Tar Model Compound over Three-Dimensional Ordered Macroporous Ni-Pt/Ce1-xZrxO2 Catalysts[J]. Appl. Catal. A-Gen., 2020,60717859.

    12. [12]

      Afolabi A T, Kechagiopoulos P N, Liu Y, Li C Z. Kinetic Features of Ethanol Steam Reforming and Decomposition Using a Biochar-Supported Ni Catalyst[J]. Fuel Process. Technol., 2021,212106622. doi: 10.1016/j.fuproc.2020.106622

    13. [13]

      Jiao Y, Sun D A, Zhang J W, Du Y M, Kang J P, Li C Y, Lu J, Wang J L, Chen Y Q. Steam Reforming of n-Decane toward H2 Production over Ni/Ce-Al2O3 Composite Catalysts: Effects of M (M=Fe, Co, Cu, Zn) Promoters[J]. J. Anal. Appl. Pyrolysis, 2016,120:238-246. doi: 10.1016/j.jaap.2016.05.011

    14. [14]

      He Z F, Jiao Y, Wang J L, Chen Y Q. Bi-functional Composite Oxides M(Na, K)-Ni/La-Al2O3 Catalysts for Steam Reforming of n-Decane[J]. Fuel, 2018,212:193-201. doi: 10.1016/j.fuel.2017.10.043

    15. [15]

      Chen M Q, Liang D F, Wang Y S, Wang C S, Tang Z, Li C, Hu J X, Cheng W, Yang Z L, Zhang H, Wang J. Hydrogen Production by Ethanol Steam Reforming over M-Ni/Sepiolite (M=La, Mg or Ca) Catalysts[J]. Int. J. Hydrog. Energy, 2021,46:21796-21811. doi: 10.1016/j.ijhydene.2021.04.012

    16. [16]

      Li L, Tang D W, Song Y C, Jiang B, Zhang Q. Hydrogen Production from Ethanol Steam Reforming on Ni-Ce/MMT Catalysts[J]. Energy, 2018,149:937-943. doi: 10.1016/j.energy.2018.02.116

    17. [17]

      HOU Y, ZHANG R J, LU Q, YANG S X, LI M F. Research on Electrocatalytic Steam Reforming of Methane with Modified Ni/γ-Al2O3 Catalysts[J]. Journal of Fuel Chemistry and Technology, 2018,46:489-499.

    18. [18]

      Gray J T, Burnett D, Sundheim M D, Jr J R I, Ha S. Steam Reforming of Tetrahydrodicyclopentadiene over Socketed Nickel Perovskite Catalysts with an Applied Electric Field[J]. Energy Technol., 2020,8(7)2000172. doi: 10.1002/ente.202000172

    19. [19]

      Zheng Q C, Xiao Z R, Xu J S, Pan L, Zhang X W, Zou J J. Catalytic Steam Reforming and Heat Sink of High-Energy-Density Fuels: Correlation of Reaction Behaviors with Molecular Structures[J]. Fuel, 2021,286:119371-119381. doi: 10.1016/j.fuel.2020.119371

    20. [20]

      Khzouz M, Gkanas E I, Du S F, Wood J. Catalytic Performance of Ni-Cu/Al2O3 for Effective Syngas Production by Methanol Steam Reforming[J]. Fuel, 2018,232:672-683. doi: 10.1016/j.fuel.2018.06.025

    21. [21]

      Li L, Cheruvathu A, Zuo S W, An P F, Hou F, Xu J, Li G Z, Liu G Z. Surface Structure Modulating of Ni-Pt Bimetallic Catalysts Boosts n-Dodecane Steam Reforming[J]. Appl. Catal. B-Environ., 2021,299120670. doi: 10.1016/j.apcatb.2021.120670

    22. [22]

      Liu H R, Li H S, Li S Z. Ni-Hydrocalumite Derived Catalysts for Ethanol Steam Reforming on Hydrogen Production[J]. Int. J. Hydrog. Energy, 2021,47(58):24610-24618.

    23. [23]

      Zou X H, Chen T H, Zhang P, Chen D, He J K, Dang Y L. High Catalytic Performance of Fe-Ni/Palygorskite in the Steam Reforming of Toluene for Hydrogen Production[J]. Appl. Energy, 2018,226:827-837. doi: 10.1016/j.apenergy.2018.06.005

    24. [24]

      Lim S S, Lee H J, Moon D J, Kim J H, Park N C, Shin J S, Kim Y C. Autothermal Reforming of Propane over Ce Modified Ni/LaAlO3 Perovskite-Type Catalysts[J]. Chem. Eng. J., 2009,152:220-226. doi: 10.1016/j.cej.2009.03.054

    25. [25]

      Jiao Y, Zhang J W, Du Y M, Li F X, Li C Y, Lu J, Wang J L, Chen Y Q. Hydrogen Production by Catalytic Steam Reforming of Hydrocarbon Fuels over Ni/Ce-Al2O3 Bifunctional Catalysts: Effects of SrO Addition[J]. Int. J. Hydrog. Energy, 2016,41:13436-13447. doi: 10.1016/j.ijhydene.2016.05.178

    26. [26]

      Jayaprakash S, Dewangan N, Jangam A, Das S, Kawi S. LDH-Derived Ni-MgO-Al2O3 Catalysts for Hydrogen-Rich Syngas Production via Steam Reforming of Biomass Tar Model: Effect of Catalyst Synthesis Methods[J]. Int. J. Hydrog. Energy, 2021,46:18338-18352. doi: 10.1016/j.ijhydene.2021.03.013

    27. [27]

      Jiao Y, Zhang H, Li S S, Guo C H, Yao P, Wang J L. Impact of Acidity in ZrO2-TiO2-Al2O3 Composite Oxides on the Catalytic Activity and Coking Behaviors during n-Decane Cracking[J]. Fuel, 2018,233:724-731. doi: 10.1016/j.fuel.2018.06.011

    28. [28]

      Ji Y J, Yang H H, Zhang Q, Yan W. Phosphorus Modification Increases Catalytic Activity and Stability of ZSM-5 Zeolite on Supercritical Catalytic Cracking of n-Dodecane[J]. J. Solid State Chem., 2017,251:7-13. doi: 10.1016/j.jssc.2017.03.023

    29. [29]

      Arif M, Yasin G, Shakeel M, Mushtaq M A, Ye W, Fang X. Hierarchical CoFe-layered Double Hydroxide and g-C3N4 Heterostructures with Enhanced Bifunctional Photo/Electrocatalytic Activity towards Overall Water Splitting[J]. Mater. Chem. Front., 2019,3:520-531. doi: 10.1039/C8QM00677F

    30. [30]

      WU H. Study on Ni Based Catalyst in Hydrogen Production by Steam Reforming of Glycerol. Hangzhou: Zhejiang University of Technology, 2016.

    31. [31]

      Ashok J, Kawi S. Steam Reforming of Toluene as a Biomass Tar Model Compound over CeO2 Promoted Ni/CaO-Al2O3 Catalytic Systems[J]. Int. J. Hydrog. Energy, 2013,38:13938-13949. doi: 10.1016/j.ijhydene.2013.08.029

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    3. [3]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    17. [17]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    18. [18]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(5)
  • Abstract views(774)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return