Citation: Jia-Hui LIU, Dao-An SUN, Chun-Ying LI, Yong-Mei DU, Zhi-Xuan WANG, Jian LÜ. Effects of Promoters on Polycyclic Hydrocarbon JP-10 Steam Reforming for Hydrogen Production over Ni/γ-Al2O3 Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2412-2422. doi: 10.11862/CJIC.2022.217 shu

Effects of Promoters on Polycyclic Hydrocarbon JP-10 Steam Reforming for Hydrogen Production over Ni/γ-Al2O3 Catalysts

Figures(10)

  • A series of 15%Ni-5%M/γ-Al2O3 catalysts (denoted as NMA, M=Na, Mg, Ce) modified by Alkali metal Na, alkaline-earth metal Mg, and rare earth metal Ce promoters were prepared by the incipient-wetness co-impregnation method. The texture and surface properties of the above catalysts were characterized and analyzed by XRD (X-ray diffraction), N2 adsorption-desorption, H2-TPR (H2-programmed temperature reduction), TEM (transmission electron microscope), NH3-TPD (NH3-programmed temperature desorption), TG (thermogravimetric), and Raman spectrum techniques. Effects of these promoters on the catalytic performance for steam reforming of JP-10 as a representative of polycyclic hydrocarbons were investigated in a micro-channel reactor (length: 300 mm, inner diameter: 4 mm, 304 stainless steel) wash-coated by catalyst slurry from 600 to 750 ℃ with the feeds of exo-tetrahydrodicyclopentadi-enew (JP-10) (0.5 mL·min-1) and deionized water (1.5 mL·min-1). The above catalyst slurry was prepared by fast ball-milling of catalyst powder, deionized water, 25% silica sol binder for 0.5 h, and the resulted catalyst loading was about 0.25 g. The results showed that all the promoters significantly improved the catalytic activity of Ni/γ -Al2O3 catalysts (denoted as NA) and carbon deposition resistance. Among them, the alkali metal promoter Na exhibited the best modification effect overall. It not only reduced the size of nickel grains and total acid amount, improved the dispersibility of nickel active components, and reduced property, but also inhibited the accumulation of nickel in the high-temperature reforming reaction to the maximum extent. Specifically, conversion of JP-10 and H2 selectivity of NNaA catalyst could reach 82.9% and 73.3%, respectively, and the carbon formation was as low as 0.53 mg·gfeed-1 under the reaction conditions of normal pressure, 750 ℃, steam/carbon (S/C) molar ratio of 2.4, and weight hourly space velocity (WHSV) of 472 h-1. After the reaction, most filamentous carbons were observed on catalysts NNaA, while carbon deposits on the other catalysts were mostly amorphous carbons.
  • 加载中
    1. [1]

      Xie H Q, Yu Q B, Lu H, Zhang Y Y, Zhang J R, Qin Q. Thermodynamic Study for Hydrogen Production from Bio-Oil via Sorption-Enhanced Steam Reforming: Comparison with Conventional Steam Reforming[J]. Int. J. Hydrog. Energy, 2017,42:28718-28731. doi: 10.1016/j.ijhydene.2017.09.155

    2. [2]

      QIAO W J, XIAO G P, ZHANG L, QING S J, ZHAO Y Q, GENG Z X, GAO Z X. Catalytic Performance of CuO/La1-xCexCrO3 in the Steam Reforming of Methanol[J]. Journal of Fuel Chemistry and Technology, 2021,49:205-210.

    3. [3]

      Jiao Y, He Z F, Wang J L, Chen Y Q. N-Decane Steam Reforming for Hydrogen Production over Mono- and Bi-metallic Co-Ni/Ce-Al2O3 Catalysts: Structure-Activity Correlations[J]. Energy Convers. Manage., 2017,148:954-962. doi: 10.1016/j.enconman.2017.06.065

    4. [4]

      Sun D A, Du Y M, Wang Z X, Zhang J W, Li Y, Li J Y, Kou L G, Li C Y, Li J W, Feng H, Lu J. Effects of CaO Addition on Ni/CeO2-ZrO2-Al2O3 Coated Monolith Catalysts for Steam Reforming of n-Decane[J]. Int. J. Hydrog. Energy, 2020,45:16421-16431. doi: 10.1016/j.ijhydene.2020.04.126

    5. [5]

      Liu X, Bao C, Zhu Z, Zheng H, Song C, Xu Q. Thermo-Photo Synergic Effect on Methanol Steam Reforming over Mesoporous Cu/TiO2-CeO2 Catalysts[J]. Int. J. Hydrog. Energy, 2021,46:26741-26756. doi: 10.1016/j.ijhydene.2021.05.157

    6. [6]

      Upadhyay M, Lee H, Kim A, Lee S, Lim H. CFD Simulation of Methane Steam Reforming in a Membrane Reactor: Performance Characteristics over Range of Operating Window[J]. Int. J. Hydrog. Energy, 2021,46:30402-30411. doi: 10.1016/j.ijhydene.2021.06.178

    7. [7]

      FANG Z Q, SHI D X, LI H S, WU Q, JIAO Q Z. Recent Progress in the Synthetic Process of Exo-tetrahydrodicyclopentadiene[J]. Fine Chemicals, 2020,37(1):11-19.

    8. [8]

      Li G Y, Hou B L, Wang A Q, Xin X L, Cong Y, Wang X D, Li N, Zhang T. Making JP-10 Superfuel Affordable with a Lignocellulosic Platform Compound[J]. Angew. Chem. Int. Ed., 2019,58:12154-12158. doi: 10.1002/anie.201906744

    9. [9]

      Zhang H C, Xiao Z R, Yang M, Tian Y J, Li G Z, Zhang X W, Liu G Z. Catalytic Steam Reforming of JP-10 over Ni/SBA-15[J]. Int. J. Hydrog. Energy, 2020,45:4284-4296. doi: 10.1016/j.ijhydene.2019.12.049

    10. [10]

      Wang X B, Yang S Q, Xu C, Ma H D, Zhang Z H, Du Z Y, Li W Y. Effect of Boron Doping on the Performance of Ni/Biochar Catalysts for Steam Reforming of Toluene as a Tar Model Compound[J]. J. Anal. Appl. Pyrolysis, 2021,155105033. doi: 10.1016/j.jaap.2021.105033

    11. [11]

      Zhou S Y, Chen Z Z, Gong H J, Wang X S, Zhu T T, Zhou Y C. Low-Temperature Catalytic Steam Reforming of Toluene as a Biomass Tar Model Compound over Three-Dimensional Ordered Macroporous Ni-Pt/Ce1-xZrxO2 Catalysts[J]. Appl. Catal. A-Gen., 2020,60717859.

    12. [12]

      Afolabi A T, Kechagiopoulos P N, Liu Y, Li C Z. Kinetic Features of Ethanol Steam Reforming and Decomposition Using a Biochar-Supported Ni Catalyst[J]. Fuel Process. Technol., 2021,212106622. doi: 10.1016/j.fuproc.2020.106622

    13. [13]

      Jiao Y, Sun D A, Zhang J W, Du Y M, Kang J P, Li C Y, Lu J, Wang J L, Chen Y Q. Steam Reforming of n-Decane toward H2 Production over Ni/Ce-Al2O3 Composite Catalysts: Effects of M (M=Fe, Co, Cu, Zn) Promoters[J]. J. Anal. Appl. Pyrolysis, 2016,120:238-246. doi: 10.1016/j.jaap.2016.05.011

    14. [14]

      He Z F, Jiao Y, Wang J L, Chen Y Q. Bi-functional Composite Oxides M(Na, K)-Ni/La-Al2O3 Catalysts for Steam Reforming of n-Decane[J]. Fuel, 2018,212:193-201. doi: 10.1016/j.fuel.2017.10.043

    15. [15]

      Chen M Q, Liang D F, Wang Y S, Wang C S, Tang Z, Li C, Hu J X, Cheng W, Yang Z L, Zhang H, Wang J. Hydrogen Production by Ethanol Steam Reforming over M-Ni/Sepiolite (M=La, Mg or Ca) Catalysts[J]. Int. J. Hydrog. Energy, 2021,46:21796-21811. doi: 10.1016/j.ijhydene.2021.04.012

    16. [16]

      Li L, Tang D W, Song Y C, Jiang B, Zhang Q. Hydrogen Production from Ethanol Steam Reforming on Ni-Ce/MMT Catalysts[J]. Energy, 2018,149:937-943. doi: 10.1016/j.energy.2018.02.116

    17. [17]

      HOU Y, ZHANG R J, LU Q, YANG S X, LI M F. Research on Electrocatalytic Steam Reforming of Methane with Modified Ni/γ-Al2O3 Catalysts[J]. Journal of Fuel Chemistry and Technology, 2018,46:489-499.

    18. [18]

      Gray J T, Burnett D, Sundheim M D, Jr J R I, Ha S. Steam Reforming of Tetrahydrodicyclopentadiene over Socketed Nickel Perovskite Catalysts with an Applied Electric Field[J]. Energy Technol., 2020,8(7)2000172. doi: 10.1002/ente.202000172

    19. [19]

      Zheng Q C, Xiao Z R, Xu J S, Pan L, Zhang X W, Zou J J. Catalytic Steam Reforming and Heat Sink of High-Energy-Density Fuels: Correlation of Reaction Behaviors with Molecular Structures[J]. Fuel, 2021,286:119371-119381. doi: 10.1016/j.fuel.2020.119371

    20. [20]

      Khzouz M, Gkanas E I, Du S F, Wood J. Catalytic Performance of Ni-Cu/Al2O3 for Effective Syngas Production by Methanol Steam Reforming[J]. Fuel, 2018,232:672-683. doi: 10.1016/j.fuel.2018.06.025

    21. [21]

      Li L, Cheruvathu A, Zuo S W, An P F, Hou F, Xu J, Li G Z, Liu G Z. Surface Structure Modulating of Ni-Pt Bimetallic Catalysts Boosts n-Dodecane Steam Reforming[J]. Appl. Catal. B-Environ., 2021,299120670. doi: 10.1016/j.apcatb.2021.120670

    22. [22]

      Liu H R, Li H S, Li S Z. Ni-Hydrocalumite Derived Catalysts for Ethanol Steam Reforming on Hydrogen Production[J]. Int. J. Hydrog. Energy, 2021,47(58):24610-24618.

    23. [23]

      Zou X H, Chen T H, Zhang P, Chen D, He J K, Dang Y L. High Catalytic Performance of Fe-Ni/Palygorskite in the Steam Reforming of Toluene for Hydrogen Production[J]. Appl. Energy, 2018,226:827-837. doi: 10.1016/j.apenergy.2018.06.005

    24. [24]

      Lim S S, Lee H J, Moon D J, Kim J H, Park N C, Shin J S, Kim Y C. Autothermal Reforming of Propane over Ce Modified Ni/LaAlO3 Perovskite-Type Catalysts[J]. Chem. Eng. J., 2009,152:220-226. doi: 10.1016/j.cej.2009.03.054

    25. [25]

      Jiao Y, Zhang J W, Du Y M, Li F X, Li C Y, Lu J, Wang J L, Chen Y Q. Hydrogen Production by Catalytic Steam Reforming of Hydrocarbon Fuels over Ni/Ce-Al2O3 Bifunctional Catalysts: Effects of SrO Addition[J]. Int. J. Hydrog. Energy, 2016,41:13436-13447. doi: 10.1016/j.ijhydene.2016.05.178

    26. [26]

      Jayaprakash S, Dewangan N, Jangam A, Das S, Kawi S. LDH-Derived Ni-MgO-Al2O3 Catalysts for Hydrogen-Rich Syngas Production via Steam Reforming of Biomass Tar Model: Effect of Catalyst Synthesis Methods[J]. Int. J. Hydrog. Energy, 2021,46:18338-18352. doi: 10.1016/j.ijhydene.2021.03.013

    27. [27]

      Jiao Y, Zhang H, Li S S, Guo C H, Yao P, Wang J L. Impact of Acidity in ZrO2-TiO2-Al2O3 Composite Oxides on the Catalytic Activity and Coking Behaviors during n-Decane Cracking[J]. Fuel, 2018,233:724-731. doi: 10.1016/j.fuel.2018.06.011

    28. [28]

      Ji Y J, Yang H H, Zhang Q, Yan W. Phosphorus Modification Increases Catalytic Activity and Stability of ZSM-5 Zeolite on Supercritical Catalytic Cracking of n-Dodecane[J]. J. Solid State Chem., 2017,251:7-13. doi: 10.1016/j.jssc.2017.03.023

    29. [29]

      Arif M, Yasin G, Shakeel M, Mushtaq M A, Ye W, Fang X. Hierarchical CoFe-layered Double Hydroxide and g-C3N4 Heterostructures with Enhanced Bifunctional Photo/Electrocatalytic Activity towards Overall Water Splitting[J]. Mater. Chem. Front., 2019,3:520-531. doi: 10.1039/C8QM00677F

    30. [30]

      WU H. Study on Ni Based Catalyst in Hydrogen Production by Steam Reforming of Glycerol. Hangzhou: Zhejiang University of Technology, 2016.

    31. [31]

      Ashok J, Kawi S. Steam Reforming of Toluene as a Biomass Tar Model Compound over CeO2 Promoted Ni/CaO-Al2O3 Catalytic Systems[J]. Int. J. Hydrog. Energy, 2013,38:13938-13949. doi: 10.1016/j.ijhydene.2013.08.029

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(1)
  • Abstract views(401)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return