Citation: Yin-Ling HOU, Jia JI, Yao ZUO, Sheng-Tao LU, Xin-Chao WANG, Xiao-Meng HU, Xiao-Qiang HUANG. Structure, Magnetic Property, Bacteriostatic Activity, and Large Magnetocaloric Effect of a Tetranuclear Gd(Ⅲ)-Based Cluster[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2267-2274. doi: 10.11862/CJIC.2022.216 shu

Structure, Magnetic Property, Bacteriostatic Activity, and Large Magnetocaloric Effect of a Tetranuclear Gd(Ⅲ)-Based Cluster

  • Corresponding author: Yin-Ling HOU, hyl0506@126.com
  • Received Date: 23 March 2022
    Revised Date: 13 July 2022

Figures(9)

  • An interesting polynuclear Gd(Ⅲ)-based cluster with the molecular formula [Gd4(CH3COO)6(H3L)2]· 2CH3OH (1) based on a polydentate ligand (H6L=1, 3-bis(tris(hydroxymethyl)methylamino)propane) has been successfully synthesized via the solvothermal method. The structure, magnetic property, and bacteriostatic activity of cluster 1 have been systematically studied. Structural analysis shows that there are two distinct coordination environments of central Gd(Ⅲ) ions and cluster 1 mainly contains a butterfly Gd4 core. The magnetic study reveals that antiferromagnetic interaction exists in cluster 1. More importantly, cluster 1 displayed significant cryogenic magnetic refrigeration property with-ΔSm=40.6 J·kg-1·K-1 at T=2.0 K and ΔH=7.0 T. Moreover, cluster 1 possessed antibacterial activity on five common bacteria, among which the antibacterial effect on Micrococcus luteus was the best.
  • 加载中
    1. [1]

      Li X Y, Su H F, Li Q W, Feng R, Bai H Y, Chen H Y, Xu J, Bu X H. A Giant Dy76 Cluster: A New Fused Bi-Nanopillar Structural Model in Lanthanide Clusters[J]. Angew. Chem. Int. Ed., 2019,58(30):10184-10188. doi: 10.1002/anie.201903817

    2. [2]

      Liu J L, Chen Y C, Tong M L. Symmetry Strategies for High Performance Lanthanide-Based Single-Molecule Magnets[J]. Chem. Soc. Rev., 2018,47(7):2431-2453. doi: 10.1039/C7CS00266A

    3. [3]

      Zheng Y Z, Zhou G J, Zheng Z P, Winpenny R E P. Molecule-Based Magnetic Coolers[J]. Chem. Soc. Rev., 2014,43(5):1462-1475. doi: 10.1039/C3CS60337G

    4. [4]

      Qin L, Yu Y Z, Liao P Q, Xue W, Zheng Z P, Chen X M, Zheng Y Z. A"Molecular Water Pipe": A Giant Tubular Cluster {Dy72} Exhibits Fast Proton Transport and Slow Magnetic Relaxation[J]. Adv. Mater., 2016,28(48):10772-10779. doi: 10.1002/adma.201603381

    5. [5]

      Wang K, Chen Z L, Zou H H, Hu K, Li H Y, Zhang Z, Sun W Y, Liang F P. A Single-Stranded {Gd18} Nano-Wheel with a Symmetric Polydentate Diacylhydrazone Ligand[J]. Chem. Commun., 2016,52(53):8297-8300. doi: 10.1039/C6CC02208A

    6. [6]

      Wang K, Chen Z L, Zou H H, Zhang S H, Li Y, Zhang X Q, Sun W Y, Liang F P. Diacylhydrazone-Assembled {Ln11} Nanoclusters Featuring a"Double-Boats Conformation"Topology: Synthesis, Structures and Magnetism[J]. Dalton Trans., 2018,47(7):2337-2343. doi: 10.1039/C7DT03179C

    7. [7]

      Dinca A S, Mindru A, Dragancea D, Tiseanu C, Shova S, Cornia S, Carrella L M, Rentschler E, Affronte M, Andruh M. Aggregation of[Ln12]Clusters by the Dianion of 3-Formylsalicylic Acid, Synthesis, Crystal Structures, Magnetic and Luminescence Properties[J]. Dalton Trans., 2019,48(5):1700-1708. doi: 10.1039/C8DT04602F

    8. [8]

      Zheng X Y, Jiang Y H, Zhuang G L, Liu D P, Liao H G, Kong X J, Long L S, Zheng L S. A Gigantic Molecular Wheel of {Gd140}: A New Member of the Molecular Wheel Family[J]. J. Am. Chem. Soc., 2017,139(50):18178-18181. doi: 10.1021/jacs.7b11112

    9. [9]

      Zheng X Y, Peng J B, Kong X J, Long L S, Zheng L S. Mixed-Anion Templated Cage-like Lanthanide Clusters: Gd27 and Dy27[J]. Inorg. Chem. Front., 2016,3(2):320-325. doi: 10.1039/C5QI00249D

    10. [10]

      Luo Z R, Zou H H, Chen Z L, Li B, Wang K, Liang F P. Triethylamine-Templated Nanocalix Ln12 Clusters of Diacylhydrazone: Crystal Structures and Magnetic Properties[J]. Dalton Trans., 2019,48(46):17414-17421. doi: 10.1039/C9DT03335A

    11. [11]

      Lin P H, Burchell T J, Ungur L, Chibotaru L F, Wernsdorfer W, Murugesu M. A Polynuclear Lanthanide Single-Molecule Magnet with a Record Anisotropic Barrier[J]. Angew. Chem. Int. Ed., 2009,48(50):9489-9492. doi: 10.1002/anie.200903199

    12. [12]

      Guo Y N, Xu G F, Gamez P, Zhao L, Lin S Y, Deng R P, Tang J K, Zhang H J. Two-Step Relaxation in a Linear Tetranuclear Dysprosium(Ⅲ) Aggregate Showing Single-Molecule Magnet Behavior[J]. J. Am. Chem. Soc., 2010,132(25):8538-8539. doi: 10.1021/ja103018m

    13. [13]

      Li X L, Wu J F, Tang J K, Guennic B L, Shi W, Cheng P. A Planar Triangular Dy3+Dy3 Single-Molecule Magnet with a Toroidal Magnetic Moment[J]. Chem. Commun., 2016,52(61):9570-9573. doi: 10.1039/C6CC05326B

    14. [14]

      Zheng X Y, Kong X J, Zheng Z, Long L S, Zheng L S. High-Nuclearity Lanthanide-Containing Clusters as Potential Molecular Magnetic Coolers[J]. Acc. Chem. Res., 2018,51(2):517-525. doi: 10.1021/acs.accounts.7b00579

    15. [15]

      Luo X M, Hu Z B, Lin Q F, Cheng W W, Cao J P, Cui C H, Mei H, Song Y, Xu Y. Exploring the Performance Improvement of Magnetocaloric Effect Based Gd-Exclusive Cluster Gd60[J]. J. Am. Chem. Soc., 2018,140(36):11219-11222. doi: 10.1021/jacs.8b07841

    16. [16]

      Guo F S, Chen Y C, Mao L L, Lin W Q, Leng J D, Tarasenko R, Orendac M, Prokleska J, Sechovsky V, Tong M L. Anion-Templated Assembly and Magnetocaloric Properties of a Nanoscale {Gd38} Cage versus a {Gd48} Barrel[J]. Chem. Eur. J., 2013,19(44):14876-14885. doi: 10.1002/chem.201302093

    17. [17]

      Zhang Z M, Zangana K H, Kostopoulos A K, Tong M L, Winpenny R E P. A Pseudo-icosahedral Cage {Gd12} Based on Aminomethyl Phosphonate[J]. Dalton Trans., 2016,45(22):9041-9044. doi: 10.1039/C6DT00876C

    18. [18]

      Song T Q, Dong J, Yang A F, Che X J, Gao H L, Cui J Z, Zhao B. Wheel-like Ln18 Cluster Organic Frameworks for Magnetic Refrigeration and Conversion of CO2[J]. Inorg. Chem., 2018,57(6):3144-3150. doi: 10.1021/acs.inorgchem.7b03142

    19. [19]

      Wu J F, Li X L, Zhao L, Guo M, Tang J K. Enhancement of Magnetocaloric Effect through Fixation of Carbon Dioxide: Molecular Assembly from Ln4 to Ln4 Cluster Pairs[J]. Inorg. Chem., 2017,56(7):4104-4111. doi: 10.1021/acs.inorgchem.7b00094

    20. [20]

      Li L F, Kuang W W, Li Y M, Zhu L L, Xu Y, Yang P P. A Series of New Octanuclear Ln8 Clusters: Magnetic Studies Reveal a Significant Cryogenic Magnetocaloric Effect and Slow Magnetic Relaxation[J]. New J. Chem., 2019,43(3):1617-1625. doi: 10.1039/C8NJ04231D

    21. [21]

      Yao M X, Cai L Z, Deng X W, Zhang W, Liu S J, Cai X M. Self-Assembly of Rare Octanuclear Quad(Double-Stranded) Cluster Helicates Showing Slow Magnetic Relaxation and the Magnetocaloric Effect[J]. New J. Chem., 2018,42(21):17652-17658. doi: 10.1039/C8NJ04169E

    22. [22]

      Das S, Dey A, Kundu S, Biswas S, Narayanan R S, Titos-Padilla S, Lorusso G, Evangelisti M, Colacio E, Chandrasekhar V. Decanuclear Ln10 Wheels and Vertex-Shared Spirocyclic Ln5 Cores: Synthesis, Structure, SMM Behavior, and MCE Properties[J]. Chem. Eur. J., 2015,21(47):16955-16967. doi: 10.1002/chem.201501992

    23. [23]

      Chang L X, Xiong G, Wang L, Cheng P, Zhao B. A 24-Gd Nanocapsule with a Large Magnetocaloric Effect[J]. Chem. Commun., 2013,49(11):1055-1057. doi: 10.1039/C2CC35800J

    24. [24]

      Peng J B, Kong X J, Zhang Q C, Orenda M, Prokleška J, Ren Y P, Long L S, Zheng Z P, Zheng L S. Beauty, Symmetry, and Magnetocaloric Effect—Four-Shell Keplerates with 104 Lanthanide Atoms[J]. J. Am. Chem. Soc., 2014,136(52):17938-17941. doi: 10.1021/ja5107749

    25. [25]

      Dong J, Cui P, Shi P F, Cheng P, Zhao B. Ultrastrong Alkali-Resisting Lanthanide-Zeolites Assembled by[Ln60]Nanocages[J]. J. Am. Chem. Soc., 2015,137(51):15988-15991. doi: 10.1021/jacs.5b10000

    26. [26]

      Fricker S P. The Therapeutic Application of Lanthanides[J]. Chem. Soc. Rev., 2006,35(6):524-533. doi: 10.1039/b509608c

    27. [27]

      Shahid M, Siddique A, Ashafaq M, Raizada M, Sama F, Ahamad N M, Mantasha I, Ansari I A, Kumar I M, Khan P, Fatma K, Siddiqi Z A. Spectroscopic Investigations on La3+, Pr3+, Nd3+ and Gd3+ Complexes with a Multidentate Ligating System: Luminescence Properties and Biological Activities[J]. J. Mol. Struct., 2018,1173:918-930. doi: 10.1016/j.molstruc.2018.07.035

    28. [28]

      Di Y, Cui X, Liu Y, Zhou C, Ren Y, Di Y, Yang X. Crystal Structure, Optical Properties, and Antibacterial Activity of Rare Earth Complexes with Designed 2-Carbonyl Propionic Acid-4-Nitro Benzoyl Hydrazone[J]. Polyhedron, 2019,171:571-577. doi: 10.1016/j.poly.2019.07.036

    29. [29]

      Huang S C, Wu B C, Ding S J. Stem Cell Differentiation-Induced Calcium Silicate Cement with Bacteriostatic Activity[J]. J. Mater. Chem. B, 2015,3(4):570-580. doi: 10.1039/C4TB01617C

    30. [30]

      Wang W M, He L Y, Wang X X, Shi Y, Wu Z L, Cui J Z. Linear-Shaped Ln4 and Ln6 Clusters Constructed by a Polydentate Schiff Base Ligand and a β-Diketone Co-ligand: Structures, Fluorescence Properties, Magnetic Refrigeration and Single-Molecule Magnet Behavior[J]. Dalton Trans., 2019,48(44):16744-16755. doi: 10.1039/C9DT03478A

    31. [31]

      Wang W M, Wu Z L, Cui J Z. Molecular Assemblies from Linear-Shaped Ln4 Clusters to Ln8 Clusters Using Different β-Diketonates: Disparate Magnetocaloric Effects and Single-Molecule Magnet Behaviours[J]. Dalton Trans., 2021,50(37):12931-12943. doi: 10.1039/D1DT01344K

    32. [32]

      Wang W M, Xue C L, Jing R Y, Ma X, Yang L N, Luo S C, Wu Z L. Two Hexanuclear Lanthanide Ln6 Clusters Featuring Remarkable Magnetocaloric Effect and Slow Magnetic Relaxation Behavior[J]. New J. Chem., 2020,44(41):18025-18030. doi: 10.1039/D0NJ03442H

    33. [33]

      Wang W M, Zhang T T, Wang D, Cui J Z. Structures and Magnetic Properties of Novel Ln(Ⅲ)-Based Pentanuclear Clusters: Magnetic Refrigeration and Single-Molecule Magnet Behavior[J]. New J. Chem., 2020,44(44):19351-19359. doi: 10.1039/D0NJ04469E

    34. [34]

      Wang W M, Zhang L, Li X Z, He L Y, Wang X X, Shi Y, Wang J, Dong J, Wu Z L. Structures, Fluorescence Properties and Magnetic Properties of a Series of Rhombus-Shaped Ln4 Clusters: Magnetocaloric Effect and Single-Molecule-Magnet Behavior[J]. New J. Chem., 2019,43(33):12941-12949. doi: 10.1039/C9NJ02872B

    35. [35]

      Xu C Y, Qiao X Y, Tan Y, Liu S S, Hou W Y, Cui Y Y, Wu W L, Hua Y P, Wang W M. Modulating Single-Molecule Magnet Behaviors of Dy4 Clusters through Utilizing Two Different β-Diketonate Coligands[J]. Polyhedron, 2019,160:272-278. doi: 10.1016/j.poly.2018.12.046

    36. [36]

      Wang W M, Hu X Y, Yang Y, Zhao J Q, Zhang Y X, Kang X M, Wu Z L. Modulation of Magnetic Relaxation Behaviors via Replacing Coordinated Solvents in a Series of Linear Tetranuclear Dy4 Complexes[J]. New J. Chem., 2020,44(20):8494-8502. doi: 10.1039/D0NJ01830A

    37. [37]

      Xu C Y, Wu Z L, Fan C J, Yan L L, Wang W M, Ji B M. Synthesis of Two Lanthanide Clusters Ln4(Gd4 and Dy4) with [2×2] Square Grid Shape: Magnetocaloric Effect and Slow Magnetic Relaxation Behaviors[J]. J. Rare Earths, 2021,39(9):1082-1088. doi: 10.1016/j.jre.2020.08.015

    38. [38]

      Wang W M, Li X Z, Zhang L, Chen J L, Wang J H, Wu Z L, Cui J Z. A Series of[2×2] Square Grid Ln4 Clusters: A Large Magnetocaloric Effect and Single-Molecule-Magnet Behavior[J]. New J. Chem., 2019,43(19):7419-7426. doi: 10.1039/C8NJ04454F

    39. [39]

      Lu Y B, Jiang X M, Zhu S D, Du Z Y, Liu C M, Xie Y R, Liu L X. Anion Effects on Lanthanide(Ⅲ) Tetrazole-1-acetate Dinuclear Complexes Showing Slow Magnetic Relaxation and Photofluorescent Emission[J]. Inorg. Chem., 2016,55(8):3738-3749. doi: 10.1021/acs.inorgchem.5b02432

    40. [40]

      Zangana K H, Pineda E M, Winpenny R E P. Tetrametallic Lanthanide(Ⅲ) Phosphonate Cages: Synthetic, Structural and Magnetic Studies[J]. Dalton Trans., 2014,43(45):17101-17107. doi: 10.1039/C4DT02630F

    41. [41]

      Lorusso G, Palacios M A, Nichol G S, Brechin E K, Roubeau O, Evangelisti M. Increasing the Dimensionality of Cryogenic Molecular Coolers: Gd-Based Polymers and Metal-Organic Frameworks[J]. Chem. Commun., 2012,48(61):7592-7594. doi: 10.1039/c2cc33485b

    42. [42]

      Phan M H, Yu S C. Review of the Magnetocaloric Effect in Manganite Materials[J]. J. Magn. Magn. Mater., 2007,308(2):325-340. doi: 10.1016/j.jmmm.2006.07.025

    43. [43]

      Jia J M, Liu S J, Cui Y, Han S D, Hu T L, Bu X H. 3D Gd Complex Containing Gd16 Macrocycles Exhibiting Large Magnetocaloric Effect[J]. Cryst. Growth Des., 2013,13(11):4631-4634. doi: 10.1021/cg4008735

    44. [44]

      Wang W M, Qiao W Z, Zhang H X, Wang S Y, Nie Y Y, Chen H M, Liu Z, Gao H L, Cui J Z, Zhao B. Structures and Magnetic Properties of Several Phenoxo-O Bridged Dinuclear Lanthanide Complexes: Dy Derivatives Displaying Substituent Dependent Magnetic Relaxation Behavior[J]. Dalton Trans., 2016,45(19):8182-8191. doi: 10.1039/C6DT00220J

    45. [45]

      Wang W M, Zhang H X, Wang S Y, Shen H Y, Gao H L, Cui J Z, Zhao B. Ligand Field Affected Single-Molecule Magnet Behavior of Lanthanide(Ⅲ) Dinuclear Complexes with an 8-Hydroxyquinoline Schiff Base Derivative as Bridging Ligand[J]. Inorg. Chem., 2015,54(22):10610-10622. doi: 10.1021/acs.inorgchem.5b01404

    46. [46]

      Liu S J, Zhao J P, Tao J, Jia J M, Han S D, Li Y, Chen Y C, Bu X H. An Unprecedented Decanuclear Gd Cluster for Magnetic Refrigeration[J]. Inorg. Chem., 2013,52(16):9163-9165. doi: 10.1021/ic400487m

    47. [47]

      Chen H M, Wang W M, Li X Q, Chu X Y, Nie Y Y, Liu Z, Huang S X, Shen H Y, Cui J Z, Gao H L. Luminescence and Magnetocaloric Effect of Ln4 Clusters (Ln=Eu, Gd, Tb, Er) Bridged by CO32-Deriving from the Spontaneous Fixation of Carbon Dioxide in the Atmosphere[J]. Inorg. Chem. Front., 2018,5(2):394-402. doi: 10.1039/C7QI00658F

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    6. [6]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    7. [7]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    8. [8]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    9. [9]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    10. [10]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    11. [11]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    12. [12]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    13. [13]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    14. [14]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    15. [15]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    16. [16]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    17. [17]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    18. [18]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    19. [19]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    20. [20]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

Metrics
  • PDF Downloads(3)
  • Abstract views(656)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return