Citation: Li-Heng ZHANG, Hai-Tao GU, Ying LUO, Qing-Yu DONG, Yan-Bin SHEN, Jing-Ying XIE. Tris(trimethylsilyl)-Based Additives Enables Practical 5 V LiNi0.5Mn1.5O4 Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2091-2102. doi: 10.11862/CJIC.2022.215 shu

Tris(trimethylsilyl)-Based Additives Enables Practical 5 V LiNi0.5Mn1.5O4 Batteries

Figures(10)

  • LiNi0.5Mn1.5O4 cathode materials have been considered promising candidates for high energy density Li-ion batteries due to their high operation potential. However, to develop 5 V LiNi0.5Mn1.5O4-based batteries, practical electrolytes with high electrochemical stability are yet to be realized. In this work, tris(trimethylsilyl)-based additives, including tris(trimethylsilyl)borate (TMSB) and tris(trimethylsilyl)phosphite (TMSPi), were selected as electrolyte additives for typical ethylene carbonate (EC)-LiPF6 based electrolyte to develop practical LiNi0.5Mn1.5O4-based batteries. Combining theoretical calculations, physicochemical characterization, and electrochemical measurements, we found that both TMSB and TMSPi can improve the Coulombic efficiency and cycling stability of 5 V LiNi0.5Mn1.5O4-based cells. Specifically, TMSB can act as the stabilizer for PF6- due to its electron deficiency nature, thereby suppressing the increase of cell impedance. In addition, thanks to its high highest occupied molecule orbital (HOMO) energy level, TMSPi can be preferentially oxidized on the surface of charged LiNi0.5Mn1.5O4 electrodes, resulting in a decent rate capacity and high discharge platform. In addition, TMSPi is conducive to the formation of robust solid electrolyte interphase (SEI) on graphite anode through the nucleophilic attack, resulting in enhanced cycle performance. As a result, Graphite||LiNi0.5Mn1.5O4 pouch cells with TMSPi - containing electrolyte displayed capacity retention of 88.9% after 100 cycles at 1C, superior to that in the blank (60.5%) and TMSB - containing (77.4%) electrolytes.
  • 加载中
    1. [1]

      Choi J W, Aurbach D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities[J]. Nat. Rev. Mater., 2016,1(4)16013. doi: 10.1038/natrevmats.2016.13

    2. [2]

      Clark J M, Nishimura S, Yamada A, Islam S. High-Voltage Pyrophosphate Cathode: Insights into Local Structure and Lithium - Diffusion Pathways[J]. Angew. Chem. Int. Ed., 2012,51(52):13149-13153. doi: 10.1002/anie.201205997

    3. [3]

      Fergus J W. Recent Developments in Cathode Materials for Lithium Ion Batteries[J]. J. Power Sources, 2010,195(4):939-954. doi: 10.1016/j.jpowsour.2009.08.089

    4. [4]

      ZHAO J H, XIE M X, ZHANG H Y, YI R W, HU C J, KANG T, ZHENG L, CUI R G, CHEN H W, SHEN Y B, CHEN L W. In Situ Modification Strategy for Development of Room - Temperature Solid - State Lithium Batteries with High Rate Capability. Acta Phys. -Chim. Sin., 2021, 37(12): 2104003

    5. [5]

      GUO F, CHEN P, KANG T, WANG Y L, LIU C H, SHEN Y B, LU W, CHEN L W. Silicon - Loaded Lithium - Carbon Composite Microspheres as Lithium Secondary Battery Anodes[J]. Acta Phys.-Chim. Sin., 2019,35(12):1365-1371. doi: 10.3866/PKU.WHXB201903008

    6. [6]

      Zhang L H, Min F Q, Luo Y, Dang G J, Gu H T, Dong Q Y, Zhang M H, Sheng L M, Shen Y B, Chen L W, Xie J Y. Practical 4.4 V Li||NCM811 Batteries Enabled by a Thermal Stable and HF Free Carbonate-Based Electrolyte[J]. Nano Energy, 2022,96107122. doi: 10.1016/j.nanoen.2022.107122

    7. [7]

      Sun Z Y, Zhou H B, Luo X H, Che Y X, Li W S, Xu M Q. Design of a Novel Electrolyte Additive for High Voltage LiCoO2 Cathode Lithium- Ion Batteries: Lithium 4 - Benzonitrile Trimethyl Borate[J]. J. Power Sources, 2021,503230033. doi: 10.1016/j.jpowsour.2021.230033

    8. [8]

      Li H H, Jin J, Wei J P, Zhou Z, Yan J. Fast Synthesis of Core-Shell LiCoPO4/C Nanocomposite via Microwave Heating and Its Electrochemical Li Intercalation Performances[J]. Electrochem. Commun., 2009,11(1):95-98. doi: 10.1016/j.elecom.2008.10.025

    9. [9]

      Hu M, Tian Y, Su L W, Wei J P, Zhou Z. Preparation and Ni-Doping Effect of Nanosized Truncated Octahedral LiCoMnO4 as Cathode Materials for 5 V Li-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2013,5(22):12185-12189. doi: 10.1021/am404250k

    10. [10]

      Hu M, Tian Y, Wei J P, Wang D G, Zhou Z. Porous Hollow LiCoMnO4 Microspheres as Cathode Materials for 5 V Lithium Ion Batteries[J]. J. Power Sources, 2014,247:794-798. doi: 10.1016/j.jpowsour.2013.09.038

    11. [11]

      Hu M, Pang X L, Zhou Z. Recent Progress in High-Voltage Lithium Ion Batteries[J]. J. Power Sources, 2013,237:229-242. doi: 10.1016/j.jpowsour.2013.03.024

    12. [12]

      Zhou L, Zhao D, Lou X. LiNi0.5Mn1.5O4 Hollow Structures as High- Performance Cathodes for Lithium-Ion Batteries[J]. Angew. Chem. Int. Ed., 2012,51(1):239-241. doi: 10.1002/anie.201106998

    13. [13]

      Shin D W, Manthiram A. Surface-Segregated, High-Voltage Spinel LiMn1.5Ni0.42Ga0.08O4 Cathodes with Superior High - Temperature Cyclability for Lithium-Ion Batteries[J]. Electrochem. Commun., 2011,13(11):1213-1216. doi: 10.1016/j.elecom.2011.08.041

    14. [14]

      Marom R, Amalraj S F, Leifer N, Jacob D, Aurbach D. A Review of Advanced and Practical Lithium Battery Materials[J]. J. Mater. Chem., 2011,21(27):9938-9954. doi: 10.1039/c0jm04225k

    15. [15]

      Lee H, Han T, Cho K Y, Ryou M H, Lee Y M. Dopamine as a Novel Electrolyte Additive for High - Voltage Lithium - Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2016,8(33):21366-21372. doi: 10.1021/acsami.6b06074

    16. [16]

      Park O K, Cho Y, Lee S, Yoo H, Song H, Cho J. Who Will Drive Electric Vehicles, Olivine or Spinel?[J]. Energy Environ. Sci., 2011,4(5):1621-1633. doi: 10.1039/c0ee00559b

    17. [17]

      Kraytsberg A, Ein-Eli Y. Higher, Stronger, Better… A Review of 5 Volt Cathode Materials for Advanced Lithium - Ion Batteries[J]. Adv. Energy Mater., 2012,2(8):922-939. doi: 10.1002/aenm.201200068

    18. [18]

      Xia J, Sinha N N, Chen L P, Kim G Y, Xiong D J, Dahn J R. Study of Methylene Methanedisulfonate as an Additive for Li - Ion Cells[J]. J. Electrochem. Soc., 2013,161(1):84-88.

    19. [19]

      Dumaz P, Rossignol C, Mantoux A, Sergent N, Bouchet R. Kinetics Analysis of the Electro - catalyzed Degradation of High Potential LiNi0.5Mn1.5O4 Active Materials[J]. J. Power Sources, 2020,469228337. doi: 10.1016/j.jpowsour.2020.228337

    20. [20]

      Zou Z Y, Xu H T, Zhang H R, Tang Y, Cui G L. Electrolyte Therapy for Improving the Performance of LiNi0.5Mn1.5O4 Cathodes Assem- bled Lithium-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(19):21368-21385. doi: 10.1021/acsami.0c02516

    21. [21]

      Liao X L, Huang Q H, Mai S W, Wang X S, Xu M Q, Xing L D, Liao Y H, Li W S. Self - Discharge Suppression of 4.9 V LiNi0.5Mn1.5O4 Cathode by Using Tris(trimethylsilyl)borate as an Electrolyte Additive[J]. J. Power Sources, 2014,272:501-507. doi: 10.1016/j.jpowsour.2014.08.117

    22. [22]

      Rong H B, Xu M Q, Xie B Y, Liao X L, Huang W Z, Xing L D, Li W S. Tris(trimethylsilyl)borate (TMSB) as a Cathode Surface Film Forming Additive for 5V Li/LiNi0.5Mn1.5O4 Li-Ion Cells[J]. Electrochim. Acta, 2014,147:31-39. doi: 10.1016/j.electacta.2014.09.105

    23. [23]

      Guéguen A, Bolli C, Mendez M A, Berg E J. Elucidating the Reactivity of Tris(trimethylsilyl) phosphite and Tris(trimethylsilyl)phosphate Additives in Carbonate Electrolytes—A Comparative Online Electrochemical Mass Spectrometry Study[J]. ACS Appl. Mater. Interfaces, 2019,3(1):290-299.

    24. [24]

      Liao X L, Zheng X W, Chen J W, Huang Z Y, Xu M Q, Xing L D, Liao Y H, Lu Q L, Li X F, Li W S. Tris(trimethylsilyl)phosphate as Electrolyte Additive for Self-Discharge Suppression of Layered Nickel Cobalt Manganese Oxide[J]. Electrochim. Acta, 2016,212:352-359. doi: 10.1016/j.electacta.2016.07.026

    25. [25]

      Yan G C, Li X H, Wang Z X, Guo H J, Wang C. Tris(trimethylsilyl) phosphate: A Film-Forming Additive for High Voltage Cathode Material in Lithium-Ion Batteries[J]. J. Power Sources, 2014,248:1306-1311. doi: 10.1016/j.jpowsour.2013.10.037

    26. [26]

      Rong H B, Xu M Q, Xing L D, Li W S. Enhanced Cyclability of LiNi0.5Mn1.5O4 Cathode in Carbonate Based Electrolyte with Incorporation of Tris(trimethylsilyl)phosphate (TMSP)[J]. J. Power Sources, 2014,261:148-155. doi: 10.1016/j.jpowsour.2014.03.032

    27. [27]

      Mai S W, Xu M Q, Liao X L, Hu J N, Lin H B, Xing L D, Liao Y H, Li X P, Li W S. Tris(trimethylsilyl)phosphite as Electrolyte Additive for High Voltage Layered Lithium Nickel Cobalt Manganese Oxide Cathode of Lithium Ion Battery[J]. Electrochim. Acta, 2014,147:565-571. doi: 10.1016/j.electacta.2014.09.157

    28. [28]

      Wang Y T, Xing L D, Li W S, Bedrov D. Why Do Sulfone - Based Electrolytes Show Stability at High Voltages? Insight from Density Functional Theory[J]. J. Phys. Chem. Lett., 2013,4(22):3992-3999. doi: 10.1021/jz401726p

    29. [29]

      Han Y K, Yoo J, Yim T. Why is Tris(trimethylsilyl)phosphite Effective as an Additive for High - Voltage Lithium - Ion Batteries?[J]. J. Mater. Chem. A, 2015,3(20):10900-10909. doi: 10.1039/C5TA01253H

    30. [30]

      Song Y M, Kim C K, Kim K E, Hong S Y, Choi N S. Exploiting Chemically and Electrochemically Reactive Phosphite Derivatives for High-Voltage Spinel LiNi0.5Mn1.5O4 Cathodes[J]. J. Power Sources, 2016,302:22-30. doi: 10.1016/j.jpowsour.2015.10.043

    31. [31]

      Yoon T, Park S, Mun J, Ryu J H, Choi W, Kang Y S, Park J H, Oh S M. Failure Mechanisms of LiNi0.5Mn1.5O4 Electrode at Elevated Temperature[J]. J. Power Sources, 2012,215:312-316. doi: 10.1016/j.jpowsour.2012.04.103

    32. [32]

      Marchini F, Williams F J, Calvo E J. Electrochemical Impedance Spectroscopy Study of the LixMn2O4 Interface with Natural Brine[J]. J. Electroanal. Chem., 2018,819:428-434. doi: 10.1016/j.jelechem.2017.11.071

    33. [33]

      Ma Y, Wang C D, Ma J, Xu G J, Chen Z, Du X F, Zhang S, Zhou X H, Cui G L, Chen L Q. Interfacial Chemistry of γ - Glutamic Acid Derived Block Polymer Binder Directing the Interfacial Compatibility of High Voltage LiNi0.5Mn1.5O4 Electrode[J]. Sci. China Chem., 2021,64(1):92-100. doi: 10.1007/s11426-020-9879-8

    34. [34]

      Wang K, Xing L D, Zhu Y M, Zheng X W, Cai D D, Li W S. A Comparative Study of Si-Containing Electrolyte Additives for Lithium Ion Battery: Which One is Better and Why is It Better[J]. J. Power Sources, 2017,342:677-684. doi: 10.1016/j.jpowsour.2016.12.112

    35. [35]

      Yim T, Han Y K. Tris(trimethylsilyl) Phosphite as an Efficient Electrolyte Additive to Improve the Surface Stability of Graphite Anodes[J]. ACS Appl. Mater. Interfaces, 2017,9(38):32851-32858. doi: 10.1021/acsami.7b11309

    36. [36]

      Zaghib K, Mauger A, Groult H, Goodenough J B, Julien C M. Advanced Electrodes for High Power Li - Ion Batteries[J]. Materials, 2013,6(3):1028-1049. doi: 10.3390/ma6031028

    37. [37]

      Qi X, Tao L, Hahn H, Schultz C, Gallus D R, Cao X, Nowak , Röser S, Li J, Laskovic I C, Rad B R, Winter M. Lifetime Limit of Tris(trimethylsilyl)phosphite as Electrolyte Additive for High Voltage Lithium Ion Batteries[J]. RSC Adv., 2016,6(44):38342-38349. doi: 10.1039/C6RA06555D

  • 加载中
    1. [1]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    2. [2]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    3. [3]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    4. [4]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    5. [5]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    6. [6]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    7. [7]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    8. [8]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    11. [11]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    12. [12]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    13. [13]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    14. [14]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    15. [15]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    16. [16]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    17. [17]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    18. [18]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    19. [19]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    20. [20]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

Metrics
  • PDF Downloads(33)
  • Abstract views(861)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return