Citation: Rong SHI, Xi-Gui WANG. Effect of Annealing Temperature on the Structure and Luminescence Properties of LiBaPO4: Eu3+ Phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2275-2282. doi: 10.11862/CJIC.2022.212 shu

Effect of Annealing Temperature on the Structure and Luminescence Properties of LiBaPO4: Eu3+ Phosphors

  • Corresponding author: Xi-Gui WANG, wangxg@imnu.edu.cn
  • Received Date: 2 April 2022
    Revised Date: 25 August 2022

Figures(9)

  • The LiBaPO4: Eu3+ phosphors were prepared by the sol-gel method, and the structure and luminescence properties of the phosphors were characterized by thermogravimetric-differential thermal analysis (TG-DTA), Fourier transformation infrared (IR) spectrum, X-ray diffraction (XRD), transmission electron microscope (TEM), and fluorescence spectrum. TG-DTA results showed that the LiBaPO4 phase can be formed upon 700 ℃. IR spectra confirmed the existence of PO43- ions. XRD results showed that temperature change can cause different degrees of cleavage of the diffraction peaks. Eu3+ doping concentration can affect the crystal phase of the sample, and the samples with a lower doping concentration appeared impurity, as the doping concentration increased, the sample was a pure phase of hexagonal crystals LiBaPO4. TEM showed that the material particles agglomerated to a certain extent with the increase in concentration. The fluorescence measurement results showed that LiBaPO4: Eu3+ had different optimal excitation wavelengths at different annealing temperatures and its dominant energy level transition is due to the differences in the crystal structure and coordination environment of the activator at different temperatures, and the concentration quenching caused by Eu3+ also varied. CIE calculation results showed that the color purity of the sample gradually improved with the increase of annealing temperature. LiBaPO4: Eu3+ can be effectively excited by 394 nm long-wave ultraviolet light, indicating its potential application in the field of white light-emitting diodes.
  • 加载中
    1. [1]

      Pucker G, Gatterer K, Fritzer H P, Bettinelli M, Ferrari M. Optical Investigation of Eu3+ in a Sodium Borosilicate Glass: Evidence for Two Different Site Distributions[J]. Phys. Rev. B, 1996,53(10):6225-6234. doi: 10.1103/PhysRevB.53.6225

    2. [2]

      Yan B, Su X Q. In Situ Chemical Coprecipitation Composition of Hybrid Precursors to Synthesize YPxV1-xO4: Eu3+ Micron Crystalline Phosphors[J]. Mater. Sci. Eng. B, 2005,116(2):196-201. doi: 10.1016/j.mseb.2004.10.004

    3. [3]

      Han B, Chen Y W, Liu B B, Zhang J Y. Solid State Synthesis and Luminescence Properties of Eu3+ Doped NaYGeO4 Phosphors[J]. Optik, 2021,242167177. doi: 10.1016/j.ijleo.2021.167177

    4. [4]

      Fan B, Han L M, Zhao W. Luminescence Properties of Novel Red-Emitting Phosphors Ba3B6Si2O16: Eu3+ for Near-UV Excited LED[J]. Optik, 2020,207164429. doi: 10.1016/j.ijleo.2020.164429

    5. [5]

      Mendhe M S, Bhure P P, Dhabale P C, Revankar S G, Puppalwar S P. Improvement of Luminescence Properties of LaSrAl3O7: Eu3+ Phosphor[J]. Mater. Today: Proc., 2019,15:633-637. doi: 10.1016/j.matpr.2019.04.131

    6. [6]

      Zhou X J, Xiong Z X, Xue H, Lin Y S, Song C X. Hydrothermal Synthesis and Photoluminescent Properties of Li2Sr 0.996SiO4: Pr0.0043+ Phosphors for White-LED Lightings[J]. J. Rare Earths, 2015,33(3):244-248. doi: 10.1016/S1002-0721(14)60410-5

    7. [7]

      Çirçir E, Kalaycioglu N O. Host-Sensitized Phosphorescence of Mn4+, Pr3+, 4+ and Nd3+ in MgAl2Si2O8[J]. Mater. Res. Bull., 2012,47(5):1138-1141. doi: 10.1016/j.materresbull.2012.02.009

    8. [8]

      Smet P F, Botterman J, Koen V, Korthout K, Poelman D. Persistent Luminescence in Nitride and Oxynitride Phosphors: A Review[J]. Opt. Mater., 2014,36(11):1913-1919. doi: 10.1016/j.optmat.2014.05.026

    9. [9]

      Mokoena P P, Gohain M, Bezuidenhoudt B, Swart H C, Ntwaeaborwa O M. Luminescent Properties and Particle Morphology of Ca3(PO4)2: Gd3+, Pr3+ Phosphor Powder Prepared by Microwave Assisted Synthesis[J]. J. Lumin., 2014,155:288-292. doi: 10.1016/j.jlumin.2014.06.058

    10. [10]

      LI W L. Preparation and Luminescence Characteristics of ABPO4 Based Phosphor for NUV-LED. Chongqing: Chongqing University, 2014: 9-10

    11. [11]

      Lin C C, Tang Y S, Hu S F, Liu R S. KBaPO4: Ln (Ln=Eu, Tb, Sm) Phosphors for UV Excitable White Light-Emitting Diodes[J]. J. Lumin., 2009,129(12):1682-1684. doi: 10.1016/j.jlumin.2009.03.022

    12. [12]

      Li P L, Wang Y Z, Wang Z J, Guo Q L, Yang Z P. Preparation and Luminescence Properties of LiBaPO4: Eu3+ Materials[J]. J. Lumin., 2011,32(7):665-669.

    13. [13]

      Puppalwar S P, Dhoble S J. Photoluminescence Properties of LiBaPO4: M3+ Phosphor for Near-UV Light-Emitting Diode (M=Eu and Dy)[J]. J. Lumin., 2015,30(6):745-750. doi: 10.1002/bio.2815

    14. [14]

      Game D N, Palan C B, Ingale N B, Omanwar S K. Synthesis and Photoluminescence Properties of Eu Doped LiBaPO4 Phosphors for Solid State Lighting[J]. J. Mater. Sci.: Mater. Electron., 2017,28(12):8777-8783. doi: 10.1007/s10854-017-6604-4

    15. [15]

      Keskin İ Ç, Türemiş M, Katı M İ, Gültekin S, Arslanlar Y T, Çetin A, Kibar R. Detailed Luminescence (RL, PL, CL, TL) Behaviors of Tb3+ and Dy3+ Doped LiMgPO4 Synthesized by Sol-Gel Method[J]. J. Lumin., 2020,225117276. doi: 10.1016/j.jlumin.2020.117276

    16. [16]

      Chengaiah T, Jamalaiah B C, Moorthy L R. Luminescence Properties of Eu3+-Doped Na3Gd(PO4)2 Red-Emitting Nanophosphors for LEDs[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2014,133:495-500. doi: 10.1016/j.saa.2014.05.089

    17. [17]

      Wang L Y, Wang X, Song Q W, Xie T Y, Guo X Q, Wang N, Guang J, Han Y Y. Hydrothermal Synthesis for the Enhanced Red and Green Sr3Y(PO4)3: Eu3+, Tb3+ Phosphors[J]. Mod. Phys. Lett. B, 2019,33(5)1950048. doi: 10.1142/S0217984919500489

    18. [18]

      Doddoji R, Thummala C. Efficient Blue-White Color Luminescence with Near-Ultraviolet Excitation in Dy3+/Tm3+: Na3Gd(PO4)2 Nanophosphor for White LEDs[J]. Solid State Sci., 2020,101106126. doi: 10.1016/j.solidstatesciences.2020.106126

    19. [19]

      CHEN Y J, ZUO X Y, XIAO L J, GENG X J, YANG Y, ZHANG Z Q, SHEN Q, CAO S. Occupation and Spectral Properties of Eu3+ in Red Orange Phosphor NaBa1-xPO4: xEu3+[J]. Joumal of Chinese Ceramic Society, 2019,47(4):494-500.  

    20. [20]

      YAN Z Y. Preparation and Luminescence Properties of Tb 3+-Doped SiO2 Core-Shell Structured Materials. Xi'an: Northwestern University, 2011: 14-39

    21. [21]

      JING L Q, SUN X J, CAI W M, LI Q Q, FU H G, HOU H G, FAN N Y. Photoluminescence of Ce Doped TiO2 Nanoparticles and Its Photocatalytic Activity[J]. Acta Chim. Sinica, 2003,8:1241-1245.  

    22. [22]

      Tian S H, Li X, Hou Y B, Teng F. Facile Combustion Synthesis and Luminescent Properties of Eu3+ Doped Alkali-Alkaline Earth Metal Phosphate Red Phosphor[J]. Optik, 2018,157:429-434. doi: 10.1016/j.ijleo.2017.10.087

    23. [23]

      Balakrishna A, Reddy L, Ntwaeaborwa O M, Swart H C. Remarkable Influence of Alkaline Earth Ions on the Enhancement of Fluorescence from Eu3+ Ion Doped in Sodiumortho-Phosphate Phosphors[J]. J. Mol. Struct., 2019,1203127375.

    24. [24]

      Wu Z C, Liu J, Gong M L, Su Q. Optimization and Temperature-Dependent Luminescence of LiBaPO4: Eu2+ Phosphor for Near-UV Light-Emitting Diodes[J]. J. Electrochem. Soc., 2009,156(3).

    25. [25]

      Long Q W, Xia Y, Huang Y H, Liao S, Gao Y, Huang J M, Liang J Q, Cai J J. Na+ Induced Electric-Dipole Dominated Transition (5D07F2) of Eu3+ Emission in AMgPO4: Eu3+ (A=Li+, Na+, K+) Phosphors[J]. Mater. Lett., 2015,145:359-362. doi: 10.1016/j.matlet.2015.01.095

    26. [26]

      Zhang S, Nakai Y, Tsuboi T, Huang Y. Luminescence and Microstructural Features of Eu-Activated LiBaPO4 Phosphor[J]. Chem. Mater., 2011,23(5):1216-1224. doi: 10.1021/cm102854p

    27. [27]

      Lin C C, Liu R S, Tang Y S, Hu S F. Full-Color and Thermally Stable KSrPO4: Ln (Ln=Eu, Tb, Sm) Phosphors for White-Light-Emitting Diodes[J]. J. Electrochem. Soc., 2008,155(9):J248-J251. doi: 10.1149/1.2953591

    28. [28]

      Zhang S, Huang Y, Seo H J. The Spectroscopic Properties and Structural Occupation of Eu3+ Sites in LiMgPO4 Phosphor[J]. J. Electrochem. Soc., 2010,157(5).

  • 加载中
    1. [1]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    2. [2]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    3. [3]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    4. [4]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    5. [5]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    6. [6]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    7. [7]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    8. [8]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    9. [9]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    10. [10]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    11. [11]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    12. [12]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    13. [13]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    14. [14]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    15. [15]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    16. [16]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    17. [17]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    18. [18]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    19. [19]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    20. [20]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

Metrics
  • PDF Downloads(14)
  • Abstract views(591)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return