Citation: Ya-Nan CHANG, Xu-Yun LU, Zhang-Yu MA, Dong-Dong XU, Ying LIU, Jian-Chun BAO. Synthesis and Hydrazine-Assisted Overall Water Splitting Performance of Ru Nanoclusters/MoO3-x Nanobelt Bifunctional Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2037-2046. doi: 10.11862/CJIC.2022.211 shu

Synthesis and Hydrazine-Assisted Overall Water Splitting Performance of Ru Nanoclusters/MoO3-x Nanobelt Bifunctional Catalyst

Figures(5)

  • This work reports a bifunctional catalyst consisting of ultra-small Ru nanoclusters anchored onto oxygenvacancy-enriched MoO3-x nanobelts (Ru/MoO3-x). The obtained catalyst exhibited excellent hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER) performances with a low overpotential of -79 and -27 mV at 10 mA·cm-2, respectively. And the assembled hydrazine-assisted overall water splitting (OWS) device required a low cell voltage of only 13 mV, significantly better than commercial 20% Pt/C and some recently reported catalysts. Such excellent performance is mainly attributed to Ru nanoclusters facilitating dehydrogenation of N2H4 in HzOR and balancing of H* adsorption/desorption in HER and the abundant electrochemical active sites, optimized electron transfer kinetics resulting from oxygen vacancies in MoO3-x and Ru/MoO3-x heterostructures.
  • 加载中
    1. [1]

      Holladay J D, Hu J, King D L, Wang Y. An Overview of Hydrogen Production Technologies[J]. Catal. Today, 2009,139:244-260. doi: 10.1016/j.cattod.2008.08.039

    2. [2]

      Xu J, Shao G L, Tang X, Lv F, Xiang H Y, Jing C F, Liu S, Dai S, Li Y G, Luo J, Zhou Z. Frenkel-Defected Monolayer MoS2 Catalysts for Efficient Hydrogen Evolution[J]. Nat. Commun., 2022,132193. doi: 10.1038/s41467-022-29929-7

    3. [3]

      Su P P, Pei W, Wang X W, Ma Y F, Jiang Q, Liang J, Zhou S, Zhao J J, Liu J, Lu G Q. Exceptional Electrochemical HER Performance with Enhanced Electron Transfer between Ru Nanoparticles and Single Atoms Dispersed on a Carbon Substrate[J]. Angew. Chem. Int. Ed., 2021,60(29):16044-16050. doi: 10.1002/anie.202103557

    4. [4]

      Jin C Q, Zhai P B, Wei Y, Chen Q, Wang X G, Yang W W, Xiao J, He Q Q, Liu Q Y, Gong Y J. Ni(OH)2 Templated Synthesis of Ultrathin Ni3S2 Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting[J]. Small, 2021,172102097. doi: 10.1002/smll.202102097

    5. [5]

      Meng G, Wei T R, Liu W J, Li W B, Zhang S S, Liu W X, Liu Q, Bao H H, Luo J, Liu X J. NiFe Layered Double Hydroxide Nanosheet Array for High-Efficiency Electrocatalytic Reduction of Nitric Oxide to Ammonia[J]. Chem. Commun., 2022,588097. doi: 10.1039/D2CC02463B

    6. [6]

      Park K R, Tran D T, Nguyen T T, Kim N H, Lee J H. Copper-Incorporated Heterostructures of Amorphous NiSex/Crystalline NiSe2 as an Efficient Electrocatalyst for Overall Water Splitting[J]. Chem. Eng. J., 2021,422130048. doi: 10.1016/j.cej.2021.130048

    7. [7]

      Yang J J, Xu L, Zhu W X, Xie M, Liao F, Cheng T, Kang Z H, Shao M W. Rh/RhOx Nanosheets as pH-Universal Bifunctional Catalysts for Hydrazine Oxidation and Hydrogen Evolution Reactions[J]. J. Mater. Chem. A, 2022,10(4):1891-1898. doi: 10.1039/D1TA09391F

    8. [8]

      Zhao S L, Li M, Han M, Xu D D, Yang J, Lin Y, Shi N E, Lu Y N, Yang R, Liu B T, Dai Z H, Bao J C. Defect-Rich Ni3FeN Nanocrystals Anchored on N-Doped Graphene for Enhanced Electrocatalytic Oxygen Evolution[J]. Adv. Funct. Mater., 2018,281706018. doi: 10.1002/adfm.201706018

    9. [9]

      Liu Y, Zhang J H, Li Y P, Qian Q Z, Li Z Y, Zhang G Q. Realizing the Synergy of Interface Engineering and Chemical Substitution for Ni3N Enables Its Bifunctionality toward Hydrazine Oxidation Assisted Energy-Saving Hydrogen Production[J]. Adv. Funct. Mater., 2021,312103673. doi: 10.1002/adfm.202103673

    10. [10]

      Zhao B, Liu J W, Xu C Y, Feng R F, Sui P F, Wang L, Zhang J J, Luo J L, Fu X Z. Hollow NiSe Nanocrystals Heterogenized with Carbon Nanotubes for Efficient Electrocatalytic Methanol Upgrading to Boost Hydrogen Co-Production[J]. Adv. Funct. Mater., 2021,312008812. doi: 10.1002/adfm.202008812

    11. [11]

      Zhu Y H, Pan Y, Zhu Y H, Jiang H L, Shen J H, Li C Z. Efficient Electrocatalytic Formic Acid Oxidation over PdAu-Manganese Oxide/Carbon[J]. J. Colloid Interface Sci., 2021,593:244-250. doi: 10.1016/j.jcis.2021.02.110

    12. [12]

      Xu X J, Guo T, Xia J Y, Zhao B L, Su G, Wang H L, Huang M H, Toghan A. Modulation of the Crystalline/Amorphous Interface Engineering on Ni-P-O-Based Catalysts for Boosting Urea Electrolysis at Large Current Densities[J]. Chem. Eng. J., 2021,425130514. doi: 10.1016/j.cej.2021.130514

    13. [13]

      Chen S, Wang C L, Liu S, Huang M X, Lu J, Xu P P, Tong H G, Hu L, Chen Q W. Boosting Hydrazine Oxidation Reaction on CoP/Co Mott-Schottky Electrocatalyst through Engineering Active Sites[J]. J. Phys. Chem. Lett., 2021,12(20):4849-4856. doi: 10.1021/acs.jpclett.1c00963

    14. [14]

      Asset T, Serov A, Padilla M, Roy A J, Matanovic I, Chatenet M, Maillard F, Atanassov P. Design of Pd-Pb Catalysts for Glycerol and Ethylene Glycol Electrooxidation in Alkaline Medium[J]. Electrocatalysis, 2018,9:480-485. doi: 10.1007/s12678-017-0449-8

    15. [15]

      Peng X Y, Hou J R, Mi Y Y, Sun J Q, Qi G C, Qin Y J, Zhang S S, Qiu Y, Luo J, Liu X J. Bifunctional Single-Atomic Mn Sites for Energy-Efficient Hydrogen Production[J]. Nanoscale, 2021,13(9):4767-4773. doi: 10.1039/D0NR09104A

    16. [16]

      Qian Q Z, Zhang J H, Li J M, Li Y P, Jin X, Zhu Y, Liu Y, Li Z Y, El-Harairy A, Xiao C, Zhang G Q, Xie Y. Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and Hydrazine Oxidation Catalysis[J]. Angew. Chem. Int. Ed., 2021,60(11):5984-5993. doi: 10.1002/anie.202014362

    17. [17]

      Liu X J, He J, Zhao S Z, Liu Y P, Zhao Z, Luo J, Hu G Z, Sun X M, Ding Y. Self-Powered H2 Production with Bifunctional Hydrazine as Sole Consumable[J]. Nat. Commun., 2018,9(1)4365. doi: 10.1038/s41467-018-06815-9

    18. [18]

      Wang H L, Tao S Y. Fabrication of a Porous NiFeP/Ni Electrode for Highly Efficient Hydrazine Oxidation Boosted H2 Evolution[J]. Nanoscale Adv., 2021,3(8):2280-2286. doi: 10.1039/D1NA00043H

    19. [19]

      Li J C, Li Y, Wang J A, Zhang C, Ma H J, Zhu C H, Fan D D, Guo Z Q, Xu M, Wang Y Y, Ma H X. Elucidating the Critical Role of Ruthenium Single Atom Sites in Water Dissociation and Dehydrogenation Behaviors for Robust Hydrazine Oxidation-Boosted Alkaline Hydrogen Evolution[J]. Adv. Funct. Mater., 2022,322109439. doi: 10.1002/adfm.202109439

    20. [20]

      Hou J R, Peng X Y, Sun J Q, Zhang S S, Liu Q, Wang X Z, Luo J, Liu X J. Accelerating Hydrazine-Assisted Hydrogen Production Kinetics with Mn Dopant Modulated CoS2 Nanowire Arrays[J]. Inorg. Chem. Front., 2022,9(12):3047-3058. doi: 10.1039/D2QI00083K

    21. [21]

      Li J C, Zhang C, Zhang C, Ma H J, Yang Y, Guo Z Q, Wang Y Y, Ma H X. Electronic Configuration of Single Ruthenium Atom Immobilized in Urchin-like Tungsten Trioxide towards Hydrazine Oxidation-Assisted Hydrogen Evolution under Wide pH Media[J]. Chem. Eng. J., 2022,430132953. doi: 10.1016/j.cej.2021.132953

    22. [22]

      Che Z W, Lu X Y, Cai B F, Xu X X, Bao J C, Liu Y. Ligand-Controlled Synthesis of High Density and Ultra-Small Ru Nanoparticles with Excellent Electrocatalytic Hydrogen Evolution Performance[J]. Nano Res., 2022,15:1269-1275. doi: 10.1007/s12274-021-3645-z

    23. [23]

      Wang J S, Guan X Y, Li H B, Zeng S Y, Li R, Yao Q X, Chen H Y, Zheng Y, Qu K G. Robust Ru-N Metal-Support Interaction to Promote Self-Powered H2 Production Assisted by Hydrazine Oxidation[J]. Nano Energy, 2022,100107467. doi: 10.1016/j.nanoen.2022.107467

    24. [24]

      Yang Q F, Zhu B T, Wang F, Zhang C J, Cai J H, Jin P, Feng L. Ru/ NC Heterointerfaces Boost Energy-Efficient Production of Green H2 over a Wide pH Range[J]. Nano Res., 2022,15(6):5134-5142. doi: 10.1007/s12274-022-4148-2

    25. [25]

      Zhang J H, Liu Y, Li J M, Jin X, Li Y P, Qian Q Z, Wang Y X, El-Harairy A, Li Z Y, Zhu Y, Zhang H K, Cheng M Y, Zeng S Y, Zhang G Q. Vanadium Substitution Steering Reaction Kinetics Acceleration for Ni3N Nanosheets Endows Exceptionally Energy-Saving Hydrogen Evolution Coupled with Hydrazine Oxidation[J]. ACS Appl. Mater. Interfaces, 2021,13(3):3881-3890. doi: 10.1021/acsami.0c18684

    26. [26]

      Khalid M, Zarate X, Saavedra-Torres M, Schott E, Honorato A M B, Hatshan M R, Varela H. Electro-Reduced Graphene Oxide Nanosheets Coupled with RuAu Bimetallic Nanoparticles for Efficient Hydrogen Evolution Electrocatalysis[J]. Chem. Eng. J., 2021,421129987. doi: 10.1016/j.cej.2021.129987

    27. [27]

      Yu J, He Q J, Yang G M, Zhou W, Shao Z P, Ni M. Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting[J]. ACS Catal., 2019,9(11):9973-10011. doi: 10.1021/acscatal.9b02457

    28. [28]

      Li J C, Zhang C, Ma H J, Wang T H, Guo Z Q, Yang Y, Wang Y Y, Ma H X. Modulating Interfacial Charge Distribution of Single Atoms Confined in Molybdenum Phosphosulfide Heterostructures for High Efficiency Hydrogen Evolution[J]. Chem. Eng. J., 2021,414128834. doi: 10.1016/j.cej.2021.128834

    29. [29]

      Li J C, Zhang C, Zhang T, Shen Z H, Zhou Q W, Pu J, Ma H J, Wang T H, Zhang H G, Fan H M, Wang Y Y, Ma H X. Multiple-Interface Relay Catalysis: Enhancing Alkaline Hydrogen Evolution through a Combination of Volmer Promoter and Electrical-Behavior Regulation[J]. Chem. Eng. J., 2020,397125457. doi: 10.1016/j.cej.2020.125457

    30. [30]

      Li C, Jang H, Kim M G, Hou L Q, Liu X, Cho J. Ru-Incorporated Oxygen-Vacancy-Enriched MoO2 Electrocatalysts for Hydrogen Evolution Reaction[J]. Appl. Catal. B-Environ., 2022,307121204. doi: 10.1016/j.apcatb.2022.121204

    31. [31]

      Luo Z, Miao R, Huan T D, Mosa I M, Poyraz A S, Zhong W, Cloud J E, Kriz D A, Thanneeru S, He J K, Zhang Y S, Ramprasad R, Suib S L. Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions[J]. Adv. Energy Mater., 2016,61600528. doi: 10.1002/aenm.201600528

    32. [32]

      Wang Q, Zhao Z L, Dong S, He D S, Lawrence M J, Han S B, Cai C, Xiang S H, Rodriguez P, Xiang B, Wang Z G, Liang Y Y, Gu M. Design of Active Nickel Single-Atom Decorated MoS2 as a pH-Universal Catalyst for Hydrogen Evolution Reaction[J]. Nano Energy, 2018,53:458-467. doi: 10.1016/j.nanoen.2018.09.003

    33. [33]

      Yusuf B A, Xie M, Ullah N, Oluigbo C J, Yaseen W, Xie J M, Xu Y G. Facile Synthesis of N, S Co-doped MoO2@C Nanorods as an Outstanding Electrocatalyst for Hydrogen Evolution Reaction[J]. Appl. Surf. Sci., 2021,537147971. doi: 10.1016/j.apsusc.2020.147971

    34. [34]

      Nagyne-Kovacs T, Studnicka L, Lukacs I E, Laszlo K, Pasierb P, Szilagyi I M, Pokol G. Hydrothermal Synthesis and Gas Sensing of Monoclinic MoO3 Nanosheets[J]. Nanomaterials, 2020,10891. doi: 10.3390/nano10050891

    35. [35]

      Li H J W, Liu K, Fu J W, Chen K J, Yang K X, Lin Y Y, Yang B B, Wang Q Y, Pan H, Cai Z J, Li H M, Cao M Q, Hu J H, Lu Y R, Chan T S, Cortés E, Fratalocchi A, Liu M. Paired Ru-O-Mo Ensemble for Efficient and Stable Alkaline Hydrogen Evolution Reaction[J]. Nano Energy, 2021,82105767. doi: 10.1016/j.nanoen.2021.105767

    36. [36]

      Yuan N N, Jiang Q Q, Wu Z X, Tang J G. Ru Nanoparticles Decorated on 2D MoO2 Nanosheets as Efficient and Durable Electrocatalysts for the Hydrogen Evolution Reaction in a Wide pH Range[J]. J. Phys. Chem. C, 2020,124(20):10804-10814. doi: 10.1021/acs.jpcc.0c01117

    37. [37]

      Liu Y, Zhang J H, Li Y P, Qian Q Z, Li Z Y, Zhu Y, Zhang G Q. Manipulating Dehydrogenation Kinetics through Dual-Doping Co3N Electrode Enables Highly Efficient Hydrazine Oxidation Assisting Self-Powered H2 Production[J]. Nat. Commun., 2020,111853. doi: 10.1038/s41467-020-15563-8

    38. [38]

      Sun Q Q, Li Y B, Wang J F, Cao B Y, Yu Y, Zhou C S, Zhang G C, Wang Z L, Zhao C. Pulsed Electrodeposition of Well-Ordered Nanoporous Cu-Doped Ni Arrays Promotes High-Efficiency Overall Hydrazine Splitting[J]. J. Mater. Chem. A, 2020,8:21084-21093. doi: 10.1039/D0TA08078K

    39. [39]

      Qian Q Z, Li Y P, Liu Y, Guo Y M, Li Z Y, Zhu Y, Zhang G Q. Hierarchical Multi-Component Nanosheet Array Electrode with Abundant NiCo/MoNi4 Heterostructure Interfaces Enables Superior Bifunctionality towards Hydrazine Oxidation Assisted Energy-Saving Hydrogen Generation[J]. Chem. Eng. J., 2021,414128818. doi: 10.1016/j.cej.2021.128818

    40. [40]

      Wang Z Y, Xu L, Huang F Z, Qu L B, Li J T, Owusu K A, Liu Z A, Lin Z F, Xiang B H, Liu X, Zhao K N, Liao X B, Yang W, Cheng Y B, Mai L Q. Copper-Nickel Nitride Nanosheets as Efficient Bifunctional Catalysts for Hydrazine-Assisted Electrolytic Hydrogen Production[J]. Adv. Energy Mater., 2019,91900390. doi: 10.1002/aenm.201900390

    41. [41]

      Sun Q Q, Zhou M, Shen Y Q, Wang L Y, Ma Y, Li Y B, Bo X, Wang Z L, Zhao C. Hierarchical Nanoporous Ni(Cu) Alloy Anchored on Amorphous NiFeP as Efficient Bifunctional Electrocatalysts for Hydrogen Evolution and Hydrazine Oxidation[J]. J. Catal., 2019,373:180-189. doi: 10.1016/j.jcat.2019.03.039

    42. [42]

      Zhang M, Wang Z Q, Duan Z Y, Wang S Q, Xu Y, Li X N, Wang L, Wang H J. Anodic Hydrazine Oxidation Assisted Hydrogen Evolution over Bimetallic RhIr Mesoporous Nanospheres[J]. J. Mater. Chem. A, 2021,9:18323-18328. doi: 10.1039/D1TA05564J

    43. [43]

      Zhang C X, Liu H X, Liu Y F, Liu X J, Mi Y Y, Guo R J, Sun J Q, Bao H H, He J, Qiu Y, Ren J Q, Yang X J, Luo J, Hu G Z. Rh2S3/N-Doped Carbon Hybrids as pH-Universal Bifunctional Electrocatalysts for Energy-Saving Hydrogen Evolution[J]. Small Methods, 2020,42000208. doi: 10.1002/smtd.202000208

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(2)
  • Abstract views(804)
  • HTML views(259)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return