Citation: Ji-Ai HUA, Xue-Man WEI, Na ZHANG, Peng-Ju CHEN, Xiang MA. Synthesis of a Linear Cobalt-Substituted Strandberg-Type Polyphospolybdate with Ability in Modulating Conformation of Aβ-Peptide Misfolding Aggregation[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1908-1918. doi: 10.11862/CJIC.2022.207 shu

Synthesis of a Linear Cobalt-Substituted Strandberg-Type Polyphospolybdate with Ability in Modulating Conformation of Aβ-Peptide Misfolding Aggregation

Figures(9)

  • A linear Co-substituted Strandberg-type polyphosphomolybdate (H2en)6{[Co(H2O)4] (P2 Mo5O23)}3·11H2O (abbreviated as CoPM, en=ethylenediamine) has been synthesized and structurally characterized by elemental analyses, IR spectrum, thermogravimetric analysis, and single-crystal X-ray diffraction. Structural analysis reveals that the molecular structural unit of CoPM consists of [P2Mo5O23]6- cluster, and Co-complex [Co(H 2O)4]2+, and they join alternately to form the 1D infinite extension skeleton of CoPM. Furthermore, each cyclic unit of the CoPM chain contains three {[Co(H2O)4](P2Mo5O23)}4- units in solid states based on bond valence sums (BVS) calculation. The intervention of CoPM on the misfolding process of amyloid β-protein (Aβ) was studied by the thioflavin T fluorescence method, turbidimetric method, circular dichroism, and NMR. The results indicate that CoPM can modulate the β-sheet-rich conformation of Aβ aggregates, and thus reduce the formation of toxic species. Moreover, 2', 7'-dichlorofluorescein (DCF) fluorescence and cytotoxicity experiments showed that CoPM could also eliminate reactive oxygen species (ROS) produced by Cu2+-Aβ aggregates. It can inhibit the cytotoxicity of β-sheet-rich species and protect synapses of PC12 cells.
  • 加载中
    1. [1]

      Silva J L. Ligand Binding and Hydration in Protein Misfolding: Insights from Studies of Prion and p53 Tumor Suppressor Proteins[J]. Acc. Chem. Res., 2010,43(3):271-279.

    2. [2]

      Kepp K P. Bioinorganic Chemistry of Alzheimer's Disease[J]. Chem. Rev., 2012,112(10):5193-5239. doi: 10.1021/cr300009x

    3. [3]

      Vinters H V. Emerging Concepts in Alzheimer's Disease[J]. Annu. Rev. Pathol.-Mech. Dis., 2015,10:291-319. doi: 10.1146/annurev-pathol-020712-163927

    4. [4]

      Walsh D M, Selkoe D J. Aβ Oligomers - A Decade of Discovery[J]. J. Neurochem., 2007,101(5):1172-1184. doi: 10.1111/j.1471-4159.2006.04426.x

    5. [5]

      Selkoe D J, Hardy J. The Amyloid Hypothesis of Alzheimer's Disease at 25 Years[J]. EMBO Mol. Med., 2016,8:595-608. doi: 10.15252/emmm.201606210

    6. [6]

      Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott J I, van Nostrand W E, Smith S O. Structural Conversion of Neurotoxic Amyloid-β1-42 Oligomers to Fibrils[J]. Nat. Struct. Mol. Biol., 2010,17(8):561-567.

    7. [7]

      Chimon S, Shaibat M A, Jones C R, Calero D C, Aizezi B, Ishii Y. Evidence of Fibril-like β-Sheet Structures in a Neurotoxic Amyloid Intermediate of Alzheimer's β - Amyloid[J]. Nat. Struct. Mol. Biol., 2007,14(12):1157-1164. doi: 10.1038/nsmb1345

    8. [8]

      Jang H, Arce F T, Ramachandran S, Kagan B L, Lal R, Nussinov R. Disordered Amyloidogenic Peptides May Insert into the Membrane and Assemble into Common Cyclic Structural Motifs[J]. Chem. Soc. Rev., 2014,43(19):6750-6764. doi: 10.1039/C3CS60459D

    9. [9]

      Selkoe D J. Resolving Controversies on the Path to Alzheimer's Therapeutics[J]. Nat. Med., 2011,17(8):1060-1065.

    10. [10]

      Faller P, Hureau C, La Penna G. Metal Ions and Intrinsically Disordered Proteins and Peptides: From Cu/Zn Amyloid -β to General Principles[J]. Acc. Chem. Res., 2014,47(8):2252-2259. doi: 10.1021/ar400293h

    11. [11]

      Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis)[J]. Chem. Rev., 2006,106(6):1995-2044. doi: 10.1021/cr040410w

    12. [12]

      Herbst M, Wanker E E. Therapeutic Approaches to Polyglutamine Diseases: Combating Protein Misfolding and Aggregation[J]. Curr. Pharm. Des., 2006,12(20):2543-2555. doi: 10.2174/138161206777698828

    13. [13]

      Conway K A, Rochet J C, Bieganski R M, Lansbury P T. Kinetic Stabilization of the α-Synuclein Protofibril by a Dopamine-α-Synuclein Adduct[J]. Science, 2001,294:1346-1349. doi: 10.1126/science.1063522

    14. [14]

      Bieschke J, Herbst M, Wiglenda T, Friedrich R P, Boeddrich A, Schiele F, Kleckers D, del Amo J M L, Gruning B A, Wang Q, Schmidt M R, Lurz R, Anwyl R, Schnoegl S, Fandrich M, Frank R F, Reif B, Gunther S, Walsh D M, Wanker E E. Small-Molecule Conversion of Toxic Oligomers to Nontoxic β-Sheet-Rich Amyloid Fibrils[J]. Nat. Chem. Biol., 2011,8(12):93-101.

    15. [15]

      Maity S, Pal S, Sardar S, Sepay N, Parvej H, Begum S, Dalui R, Das N, Pradhan A, Halder U C. Inhibition of Amyloid Fibril Formation of β - Lactoglobulin by Natural and Synthetic Curcuminoids[J]. New J. Chem., 2018,42(23):19260-19271. doi: 10.1039/C8NJ03194K

    16. [16]

      Wang X H, Wang X Y, Zhang C L, Jiao Y, Guo Z J. Inhibitory Action of Macrocyclic Platiniferous Chelators on Metal - induced Aβ Aggregation[J]. Chem. Sci., 2012,3(4):1304-1312. doi: 10.1039/c2sc01100j

    17. [17]

      Geng J, Li M, Ren J S, Wang E B, Qu X G. Polyoxometalates as Inhibitors of the Aggregation of Amyloid-β Peptides Associated with Alzheimer's Disease[J]. Angew. Chem. Int. Ed., 2011,50(18):4184-4188. doi: 10.1002/anie.201007067

    18. [18]

      Gao N, Sun H J, Dong K, Ren J S, Duan T C, Xu C, Qu X G. Transition Metal Substituted Polyoxometalate Derivatives as Functional Anti-amyloid Agents for Alzheimer's Disease[J]. Nat. Commun., 2014,5(3):3422-3431.

    19. [19]

      Gao N, Liu Z Q, Zhang H C, Liu C, Yu D Q, Ren J S, Qu X G. Site-Directed Chemical Modification of Amyloid by Polyoxometalates for Inhibition of Protein Misfolding and Aggregation[J]. Angew. Chem. Int. Ed., 2022,61(16)e202115336.

    20. [20]

      Chen Q C, Yang L C, Zheng C P, Zheng W J, Zhang J N, Zhou Y S, Liu J. Mo Polyoxometalate Nanoclusters Capable of Inhibiting the Aggregation of Aβ - Peptide Associated with Alzheimer's Disease[J]. Nanoscale, 2014,6(12):6886-6897. doi: 10.1039/C3NR05906E

    21. [21]

      Ma X, Hua J A, Wang K, Zhang H M, Zhang C L, He Y F, Guo Z J, Wang X Y. Modulating Conformation of Aβ - Peptide: An Effective Way to Prevent Protein - Misfolding Disease[J]. Inorg. Chem., 2018,57(21):13533-13543. doi: 10.1021/acs.inorgchem.8b02115

    22. [22]

      Liu Z D, Zhang A H, Sun H, Han Y, Kong L, Wang X J. Two Decades of New Drug Discovery and Development for Alzheimer's Disease[J]. RSC Adv., 2017,7(10):6046-6058. doi: 10.1039/C6RA26737H

    23. [23]

      Hua J A, Tian Y, Bian Y J, Zhao Q, Zhou Y J, Ma X. An Efficient Way for the Synthesis of Covalent Strandberg - Type Phosphomolybdate Compound H6P2Mo5O23[J]. SN Appl. Sci., 2020,2308. doi: 10.1007/s42452-020-2124-6

    24. [24]

      SAINT, Bruker AXS Inc., Madison, WI, 2007.

    25. [25]

      Brese N E, O'Keeffe M. Bond - Valence Parameters for Solids[J]. Acta Crystallogr. Sect. B, 1991,B47:192-197.

    26. [26]

      Sheldrick G M. SHEXTL-97, Programs for Crystal Structure Refinements, University of Göttingen, Germany, 1997.

    27. [27]

      Li M, Howson S E, Dong K, Gao N, Ren J S, Scott P, Qu X G. Chiral Metallohelical Complexes Enantioselectively Target Amyloid-β for Treating Alzheimer's Disease[J]. J. Am. Chem. Soc., 2014,136(33):11655-11663. doi: 10.1021/ja502789e

    28. [28]

      Yang T, Wang X H, Zhang C L, Ma X, Wang K, Wang Y, Luo J, Yang L, Yao C, Wang X Y. Specific Self-Monitoring of Metal-Associated Amyloid-β Peptide Disaggregation by a Fluorescent Chelator[J]. Chem. Commun., 2016,52(11):2245-2249. doi: 10.1039/C5CC08898D

    29. [29]

      Brown I D, Altermatt D. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database[J]. Acta Crystallogr. Sect. B, 1985,B41:244-247.

    30. [30]

      Shields G P, Raithby P R, Allen F H, Motherwell W D S. The Assignment and Validation of Metal Oxidation States in the Cambridge Structural Database[J]. Acta Crystallogr. Sect. B, 2000,B56455465.

    31. [31]

      Hua J A, Wei X M, Ma X, Jiao J Z, Chai B H, Wu C B, Zhang C L, Niu Y L. A {Cd4 Cl2O14} Cluster Functionalized Sandwich-Type Tungstoarsenate as a Conformation Modulator for Misfolding Aβ Peptides[J]. CrystEngComm, 2022,24(6):1171-1176. doi: 10.1039/D1CE01637G

    32. [32]

      Hua J A, Wei X M, Bian Y J, Ma X, Hao L, Sun J R, Fan J J, Niu Y L, Wang Y Q. A Nanoscale Polymolybdate Built by Two Hexavacant Keggin-Type Fragments via a Novel {Ca6P6O38} Cluster with β-Sheet Conformation Modulation Ability[J]. CrystEngComm, 2022,24(17)31533159.

    33. [33]

      Streb C, Ritchie C, Long D L, Kögerler P, Cronin L. Modular Assembly of a Functional Polyoxometalate Based Open Framework Constructed from Unsupported AgI-AgI Interactions[J]. Angew. Chem. Int. Ed., 2007,46(40):7579-7582. doi: 10.1002/anie.200702698

    34. [34]

      Zheng S T, Zhang J, Juan J M, Yuan D Q, Yang G Y. Poly(polyoxotungstate)s with 20 Nickel Centers: From Nanoclusters to One-Dimensional Chains[J]. Angew. Chem. Int. Ed. Engl., 2009,48(39):7176-7179. doi: 10.1002/anie.200901653

    35. [35]

      Ma X, Wang Y Q, Hua J A, Xu C Y, Yang T, Yuan J, Chen G Q, Guo Z J, Wang X Y. A β-Sheet-Targeted Theranostic Agent for Diagnosing and Preventing Aggregation of Pathogenic Peptides in Alzheimer's Disease[J]. Sci. China Chem., 2020,63:73-82. doi: 10.1007/s11426-019-9594-y

    36. [36]

      Barnham K J, Bush A I. Biological Metals and Metal-Targeting Compounds in Major Neurodegenerative Diseases[J]. Chem. Soc. Rev., 2014,43(19):6727-6749. doi: 10.1039/C4CS00138A

    37. [37]

      Kozlowski H, Janicka - Klos A, Brasun J, Gaggelli E, Valensin D, Valensin G. Copper, Iron, and Zinc Ions Homeostasis and Their Role in Neurodegenerative Disorders (Metal Uptake, Transport, Distribution and Regulation)[J]. Coord. Chem. Rev., 2009,253(21/22):2665-2685.

    38. [38]

      Ma X, Zhang C, Hua J A, Ma P T, Wang J P, Niu J Y. A Binuclear Copper Substituted Phosphomolybdate with Reactive Oxygen Species Catalytic Ability and Antimicrobial Activity[J]. CrystEngComm, 2019,21(3):394-398. doi: 10.1039/C8CE01513A

    39. [39]

      Hua J A, Yuan X, Ma X, Ma P T, Wang J P, Niu J Y. A Silver-Substituted Phosphomolybdate Prevents the Growth of Bacteria without Affecting the Balance of Reactive Oxygen Species[J]. CrystEngComm, 2020,22(45):7832-7837. doi: 10.1039/D0CE01283A

    40. [40]

      Ma X, Zhou F T, Yue H, Hua J A, Ma P T. A Nano - Linear Zinc-Substituted Phosphomolybdate with Reactive Oxygen Species Catalytic Ability and Antibacterial Activity[J]. J. Mol. Struct., 2019,1198(15)126865.

    41. [41]

      Palanimuthu D, Wu Z, Jansson P J, Braidy N, Bernhardt P V, Richardson D R, Kalinowski D S. Novel Chelators Based on Adamantane-Derived Semicarbazones and Hydrazones that Target Multiple Hallmarks of Alzheimer's Disease[J]. Dalton Trans., 2018,47(21):7190-7205. doi: 10.1039/C8DT01099D

    42. [42]

      Fu A K, Hung K W, Yuen M Y, Zhou X, Mak D S, Chan I C, Cheung T H, Zhang B, Fu W Y, Liew F Y, Ip N Y. IL - 33 Ameliorates Alzheimer's Disease like Pathology and Cognitive Decline[J]. Proc. Natl. Acad. Sci. U. S. A., 2016,113:E2705-E2713.

    43. [43]

      Tan M S, Tan L, Jiang T, Zhu X C, Wang H F, Jia C D, Yu J T. Amyloid-β Induces NLRP1-Dependent Neuronal Pyroptosis in Models of Alzheimer's Disease[J]. Cell Death Dis., 2014,5(8):1382-1382. doi: 10.1038/cddis.2014.348

    44. [44]

      Savelieff M G, De Toma A S, Derrick J S, Lim M H. The Ongoing Search for Small Molecules to Study Metal Associated Amyloid -β Species in Alzheimer's Disease[J]. Acc. Chem. Res., 2014,47(8):2475-2482. doi: 10.1021/ar500152x

    45. [45]

      Hickey J L, Lim S, Hayne D J, Paterson B M, White J M, Villemagne V L, Roselt P, Binns D, Cullinane C, Jeffery C M, Price R I, Barnham K J, Donnelly P S. Diagnostic Imaging Agents for Alzheimer's Disease: Copper Radiopharmaceuticals that Target Aβ Plaques[J]. J. Am. Chem. Soc., 2013,135(43):16120-16132. doi: 10.1021/ja4057807

    46. [46]

      Hong S, Beja-Glasser V F, Nfonoyim B M, Frouin A, Li S, Ramakrishnan S, Merry K M, Shi Q, Rosenthal A, Barres B A, Lemere C A, Selkoe D J, Stevens B. Complement and Microglia Mediate Early Synapse Loss in Alzheimer Mouse Models[J]. Science, 2016,352(6286):712-716. doi: 10.1126/science.aad8373

    47. [47]

      Frost B, Diamond M I. Prion-like Mechanisms in Neurodegenerative Diseases[J]. Nat. Rev. Neurosci., 2010,11(3):155-159. doi: 10.1038/nrn2786

    48. [48]

      Ehrnhoefer D E, Wong B K, Hayden M R. Convergent Pathogenic Pathways in Alzheimer's and Huntington's Diseases: Shared Targets for Drug Development[J]. Nat. Rev. Drug Discov., 2011,10(11):853-867. doi: 10.1038/nrd3556

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(12)
  • Abstract views(457)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return