Citation: Han-Zhi YAO, Pan YOU, Jun-Jie ZHANG, Pei-Cheng LUO. Controllable Preparation of Strontium Carbonate Microspheres by Fast Precipitation Reaction in a Miniature Y-Jet Mixer[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2103-2110. doi: 10.11862/CJIC.2022.206 shu

Controllable Preparation of Strontium Carbonate Microspheres by Fast Precipitation Reaction in a Miniature Y-Jet Mixer

  • Corresponding author: Pei-Cheng LUO, luopeicheng@seu.edu.cn
  • Received Date: 30 April 2022
    Revised Date: 21 July 2022

Figures(6)

  • In this work, a miniature Y-jet mixer was used to enhance the mixing efficiency to prepare strontium carbonate (SrCO3) microspheres by using the co - precipitation method. Ethylenediamine tetraacetic acid disodium (EDTA) was used as the additive to control particle morphology. The effects of EDTA concentration and reactant concentrations on the morphology and particle size distribution (PSD) were investigated. Experimental results demonstrate that orthorhombic-type spherical SrCO3 particles were obtained by using EDTA as an additive. The molar concentration ratio of EDTA to strontium chloride (SrCl2), RE, is the key factor affecting the particle morphology and size. When RE was fixed, reactant concentrations had little effect on the morphology and size. The microspheres prepared under the optimum conditions were 2-3 μm with a very narrow PSD. Without EDTA, only rod-shaped particles were prepared and the particles tend to aggregate into bundles. The mechanism of how EDTA regulates the morphology is also discussed.
  • 加载中
    1. [1]

      Homeijer S J, Barrett R A, Gower L B. Polymer - Induced Liquid - Precursor (PILP) Process in the Non-calcium Based Systems of Barium and Strontium Carbonate[J]. Cryst. Growth Des., 2010,10(3):1040-1052. doi: 10.1021/cg800918g

    2. [2]

      Yu J G, Guo H, Cheng B. Shape Evolution of SrCO3 Particles in the Presence of Poly-(styrene-alt-maleic acid)[J]. J. Solid State Chem., 2006,179(3):800-803. doi: 10.1016/j.jssc.2005.12.001

    3. [3]

      Zou X W, Wang Y N, Liang S D, Duan D P. Facile Synthesis of Ultrafine and High Purity Spherical Strontium Carbonate via Gas - liquid Reaction[J]. Mater. Res. Express, 2020,7(2):268-276.

    4. [4]

      Liu Y X, Jing X H, Hu X H, Wu G. Morphology of Strontium Carbonate Particle Adjusted by Phthalic Acid and Isophthalic Acid[J]. IOP Conf., 2018,389012020.

    5. [5]

      Du J M, Liu Z M, Li Z H, Han B X, Huang Y, Zhang J L. Synthesis of Mesoporous SrCO3 Spheres and Hollow CaCO3 Spheres in Room temperature Ionic Liquid[J]. Microporous Mesoporous Mater., 2005,83(1/2/3):145-149.

    6. [6]

      Cao M H, Wu X L, He X Y, Hu C W. Microemulsion-Mediated Solvothermal Synthesis of SrCO3 Nanostructures[J]. Langmuir, 2005,21(13):6093-6096. doi: 10.1021/la050736f

    7. [7]

      Gradl J, Schwarzer H C, Schwertfirm F, Manhart M, Peukert W. Precipitation of Nanoparticles in a T-Mixer: Coupling the Particle Population Dynamics with Hydrodynamics through Direct Numerical Simulation[J]. Chem. Eng. Process., 2006,45(10):908-916. doi: 10.1016/j.cep.2005.11.012

    8. [8]

      Kugler R T, Kind M. Experimental Study about Plugging in Confined Impinging Jet Mixers during the Precipitation of Strontium Sulfate[J]. Chem. Eng. Process., 2016,101:25-32. doi: 10.1016/j.cep.2015.12.007

    9. [9]

      Li W F, Wei Y, Tu G Y, Shi Z H, Liu H F, Wang F C. Experimental Study about Mixing Characteristic and Enhancement of T-Jet Reactor[J]. Chem. Eng. Sci., 2016,144:116-125. doi: 10.1016/j.ces.2016.01.024

    10. [10]

      Choi Y J, Chung S T, Oh M, Kim H S. Investigation of Crystallization in a Jet Y - Mixer by a Hybrid Computational Fluid Dynamics and Process Simulation Approach[J]. Cryst. Growth Des., 2005,5(3):959-968. doi: 10.1021/cg049670x

    11. [11]

      Susanti , Winkelman J G M, Schuur B, Heeres H J, Yue J. Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors[J]. Ind. Eng. Chem. Res., 2016,55(16):4691-4702. doi: 10.1021/acs.iecr.5b04917

    12. [12]

      Szilagyi B, Muntean N, Barabas R, Ponta O, Lakatos B G. Reaction Precipitation of Amorphous Calcium Phosphate: Population Balance Modelling and Kinetics[J]. Chem. Eng. Res. Des., 2015,93:278-286. doi: 10.1016/j.cherd.2014.04.003

    13. [13]

      DiPasquale N, Marchisio D L, Barresi A A. Model Validation for Precipitation in Solvent-Displacement Processes[J]. Chem. Eng. Sci., 2012,84:671-683. doi: 10.1016/j.ces.2012.08.043

    14. [14]

      Fonte C P, Sultan M A, Santos R J, Dias M M, Lopes J C B. Flow Imbalance and Reynolds Number Impact on Mixing in Confined Impinging Jets[J]. Chem. Eng. J., 2015,260:316-330. doi: 10.1016/j.cej.2014.08.090

    15. [15]

      Marchisio D L, Omegna F, Barresi A A. Production of TiO2 Nanoparticles with Controlled Characteristics by Means of a Vortex Reactor[J]. Chem. Eng. J., 2009,146(3):456-465. doi: 10.1016/j.cej.2008.10.031

    16. [16]

      Marchisio D L, Omegna F, Barresi A A, Bowen P. Effect of Mixing and Other Operating Parameters in Sol - gel Processes[J]. Ind. Eng. Chem. Res., 2008,47(19):7202-7210. doi: 10.1021/ie800217b

    17. [17]

      Liu Y, Cheng C Y, Liu Y, Prud'homme R K, Fox R O. Mixing in a Multi-inlet Vortex Mixer (MIVM) for Flash Nano-precipitation[J]. Chem. Eng. Sci., 2008,63(11):2829-2842. doi: 10.1016/j.ces.2007.10.020

    18. [18]

      Liu Z P, Passalacqua A, Olsen M G, Fox R O, Hill J C. Dynamic Delayed Detached Eddy Simulation of a Multi-inlet Vortex Reactor[J]. AIChE J., 2016,62(7):2570-2578. doi: 10.1002/aic.15230

    19. [19]

      Cafiero L M, Baffi G, Chianese A, Jachuck R J J. Process Intensification: Precipitation of Barium Sulfate Using a Spinning Disk Reactor[J]. Ind. Eng. Chem. Res., 2002,41(21):5240-5246. doi: 10.1021/ie010654w

    20. [20]

      Peng H, Wang N, Wang D X, Ling X. Experimental Study on the Critical Characteristics of Liquid Atomization by a Spinning Disk[J]. Ind. Eng. Chem. Res., 2016,55(21):6175-6185. doi: 10.1021/acs.iecr.6b00401

    21. [21]

      Guo S C, Evans D G, Li D Q, Duan X. Experimental and Numerical Investigation of the Precipitation of Barium Sulfate in a Rotating Liquid Film Reactor[J]. AIChE J., 2009,55(8):2024-2034. doi: 10.1002/aic.11818

    22. [22]

      Wu B, Fang Y, Zhao C C, Wang Y H, Luo P C. Experimental Study and Numerical Simulation of Barium Sulfate Precipitation Process in a Continuous Multi - orifice - Impinging Transverse Jet Reactor[J]. Powder Technol., 2017,321:180-189. doi: 10.1016/j.powtec.2017.08.042

    23. [23]

      Qi M X, Li J S, Wang S X, Yang Z S, Wang S Y, Zou X W. Synthesis of Spherical SrCO3 Powders by Ultrasonic Waves//Cui C X, Li Y, Yuan Z H. Advanced Materials Research: Vol. 535-537. [S. l. ]: Trans Tech Publications, Ltd., 2012: 301-304

    24. [24]

      Yang L F, Chu D Q, Wang L M, Ge G, Sun H L. Facile Synthesis of Porous Flower-like SrCO3 Nanostructures by Integrating Bottom-Up and Top-Down Routes[J]. Mater. Lett., 2016,167:4-8. doi: 10.1016/j.matlet.2015.12.131

    25. [25]

      Zhao Y H, Liu J R. Effect of EDTA and Phosphate on Particle Size during Precipitation of Nanosized BaSO4 Particles[J]. Chem. Lett., 2006,35(9):1040-1041. doi: 10.1246/cl.2006.1040

    26. [26]

      Zhao Y H, Jia Q Y, Gao Y, Wang X J. Effect of EDTA on the Morphology and Size of SrCO3 Particles during Crystallization//Liu X H, Jiang Z Y, Han J T. Advanced Materials Research: Vol. 148-149. [S. l. ]: Trans Tech Publications, Ltd., 2010: 1551-1555

    27. [27]

      Silver J, Martinez- Rubio M I, Ireland T G, Fern G R, Withnall R. The Effect of Particle Morphology and Crystallite Size on the Upconversion Luminescence Properties of Erbium and Ytterbium Co-doped Yttrium Oxide Phosphors[J]. J. Phys. Chem. B, 2001,105(5):948-953. doi: 10.1021/jp002778c

    28. [28]

      Zhang M X, Huo J C, Yu Y S, Cui C P, Lei Y L. Morphology Control of SrCO3 Crystals using Complexons as Modifiers in the Ethanol - Water Mixtures[J]. Chin. J. Struct. Chem., 2008,27(10):1223-1229.

    29. [29]

      Schwarzer H C, Peukert W. Experimental Investigation into the Influence of Mixing on Nanoparticle Precipitation[J]. Chem. Eng. Technol., 2002,25(6):657-661. doi: 10.1002/1521-4125(200206)25:6<657::AID-CEAT657>3.0.CO;2-5

  • 加载中
    1. [1]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    2. [2]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    3. [3]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    5. [5]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    6. [6]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    7. [7]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    8. [8]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    9. [9]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    10. [10]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    11. [11]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    12. [12]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    13. [13]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    14. [14]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    15. [15]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    16. [16]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    17. [17]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    18. [18]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    19. [19]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    20. [20]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

Metrics
  • PDF Downloads(6)
  • Abstract views(426)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return