Citation: Biao XUE, Yang-Jie FU, Meng TAN, Chao ZHANG, Ning-Yi LI, Ling-Xuan YANG, Shu-Zhen ZHENG, Qi WANG. Preparation and Visible Light Photocatalytic Properties of N and F Co-doped C3N4[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2047-2055. doi: 10.11862/CJIC.2022.204 shu

Preparation and Visible Light Photocatalytic Properties of N and F Co-doped C3N4

Figures(10)

  • To overcome the shortcomings of carbon nitride (C3N4), such as easily recombination of photogenerated charges and limited photocatalytic activity, this study explored a method to prepare NF-C3N4 via co-doping of N and F into C3N4 with improved photocatalytic performance.Using HF and NH3 produced by the in-situ decomposition of NH4F at high temperature, dual elements doping was achieved while etching C3N4.N-doped C3N4 (N-C3N4) was prepared by using ammonium chloride (NH4Cl) as a control sample.The effects of N and F co-doping on the morphology, composition, structure, and physicochemical properties of C3N4 were studied using scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), specific surface area, and electrochemistry.Compared with C3N4 and N-C3N4, NF-C3N4 had porous and increased specific surface area, and the generation, separation, and transfer of photogenerated charges were promoted.The photocatalytic reduction rate of Cr(Ⅵ) by NF-C3N4 was 2.6 times that of C3N4 and 1.7 times that of N-C3N4, respectively.The influence of different precursors(urea, dicyandiamide, and melamine)on the preparation of C3N4 was further investigated.It was found that when the mass ratio of C3N4 with urea as a precursor to NH4F was 3∶2, NF-C3N4 showed the best photocatalytic performance.Furthermore, the reduction rate of Cr(Ⅵ) can be enhanced with the increase of catalyst dosage, light intensity, hole trapping agent concentration, and decrease in pH.After 40 min visible light irradiation with 0.1 g·L-1 NF-C3N4, pH=3 and cEDTA-2Na=2 mmol·L-1, the Cr(Ⅵ) removal efficiency reached 90%.Five cyclic runs indicated that the optimized NF-C3N4 remained good performance and high stability for photocatalytic reduction of Cr(Ⅵ).
  • 加载中
    1. [1]

      Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability?[J]. Chem. Rev., 2016,116:7159-7329. doi: 10.1021/acs.chemrev.6b00075

    2. [2]

      Chang Q, Yang S S, Li L Q, Xue C R, Li Y, Wang Y Z, Hu S L, Yang J L, Zhang F. Loading Sulfur and Nitrogen Co-doped Carbon Dots onto g-C3N4 Nanosheets for an Efficient Photocatalytic Reduction of 4-Nitrophenol[J]. Dalton Trans., 2018,47:6435-6443. doi: 10.1039/C8DT00735G

    3. [3]

      Xing Y P, Wang X K, Hao S H, Zhang X L, Wang X, Ma W, Zhao G, Xu X. Recent Advances in the Improvement of g-C3N4 Based Photocatalytic Materials[J]. Chin. Chem. Lett., 2021,32:13-20. doi: 10.1016/j.cclet.2020.11.011

    4. [4]

      Liu J H, Li W F, Duan L M, Li X, Ji L, Geng Z B, Huang K K, Lu L H, Zhou L S, Liu Z R, Chen W, Liu L W, Feng S H, Zhang Y G. A Graphene-like Oxygenated Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur Batteries[J]. Nano Lett., 2015,15:5137-5142. doi: 10.1021/acs.nanolett.5b01919

    5. [5]

      Mo Z, She X, Li Y, Liu L, Huang L, Chen Z, Zhang Q, Xu H, Li H. Synthesis of g-C3N4 at Different Temperatures for Superior Visible/UV Photocatalytic Performance and Photoelectrochemical Sensing of MB Solution[J]. RSC Adv., 2015,5:101552-101562. doi: 10.1039/C5RA19586A

    6. [6]

      WANG Y Q, SHEN S H. Progress and Prospects of Non-metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances[J]. Acta Phys.-Chim. Sin., 2020,361905080. doi: 10.3866/PKU.WHXB201905080

    7. [7]

      Zhou Y J, Zhang L X, Huang W M, Kong Q L, Fan X Q, Wang M, Shi J L. N-Doped Graphitic Carbon-Incorporated g-C3N4 for Remarkably Enhanced Photocatalytic H2 Evolution under Visible Light[J]. Carbon, 2016,99:111-117. doi: 10.1016/j.carbon.2015.12.008

    8. [8]

      Wang Y, Di Y, Antonietti M, Li H R, Chen X F, Wang X C. Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids[J]. Chem. Mater., 2010,22:5119-5121. doi: 10.1021/cm1019102

    9. [9]

      Shevlin S A, Guo Z X. Anionic Dopants for Improved Optical Absorption and Enhanced Photocatalytic Hydrogen Production in Graphitic Carbon Nitride[J]. Chem. Mater., 2016,28:7250-7256. doi: 10.1021/acs.chemmater.6b02002

    10. [10]

      Hu S Z, Ma L, Xie Y, Li F Y, Fan Z P, Wang F, Wang Q, Wang Y J, Kang X X, Wu G. Hydrothermal Synthesis of Oxygen Functionalized S-P Codoped g-C3N4 Nanorods with Outstanding Visible Light Activity under Anoxic Conditions[J]. Dalton Trans., 2015,44:20889-20897. doi: 10.1039/C5DT04035C

    11. [11]

      Zhang H, Zhao Z B, Hou Y N, Tang Y C, Dong Y F, Wang S, Hu X J, Zhang Z C, Wang X Z, Qiu J S. Nanopore-Confined g-C3N4 Nanodots in N, S Co-doped Hollow Porous Carbon with Boosted Capacity for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2018,6:7133-7141. doi: 10.1039/C8TA00529J

    12. [12]

      Huang Y Q, Yan Q, Yan H J, Tang Y Q, Chen S, Yu Z Y, Tian C G, Jiang B J. Layer Stacked Lodine and Phosphorus Co-doped C3N4 for Enhanced Visible-Light Photocatalytic Hydrogen Evolution[J]. ChemCatChem, 2017,9:4083-4089. doi: 10.1002/cctc.201700786

    13. [13]

      Wang Q, Zhu N X, Liu E Q, Zhang C L, Crittenden J C, Zhang Y, Cong Y Q. Fabrication of Visible-Light Active Fe2O3-GQDs/NF-TiO2 Composite Film with Highly Enhanced Photoelectrocatalytic Performance[J]. Appl. Catal. B-Environ., 2017,205:347-356. doi: 10.1016/j.apcatb.2016.11.046

    14. [14]

      Liu C Y, Huang H W, Cui W, Dong F, Zhang Y H. Band Structure Engineering and Efficient Charge Transport in Oxygen Substituted g-C3N4 for Superior Photocatalytic Hydrogen Evolution[J]. Appl. Catal. B-Environ., 2018,230:115-124. doi: 10.1016/j.apcatb.2018.02.038

    15. [15]

      Wang Q, Chen C, Zhao D, Ma W H, Zhao J. Change of Adsorption Modes of Dyes on Fluorinated TiO2 and Its Effect on Photocatalytic Degradation of Dyes under Visible Irradiation[J]. Langmuir, 2008,24:7338-7345. doi: 10.1021/la800313s

    16. [16]

      Fu Y J, Zhang K J, Zhang Y, Cong Y Q, Wang Q. Fabrication of Visible-Light-Active MR/NH2-MIL-125(Ti) Homojunction with Boosted Photocatalytic Performance[J]. Chem. Eng. J., 2021,412128722. doi: 10.1016/j.cej.2021.128722

    17. [17]

      Zhang K J, Fu Y J, Hao D R, Guo J Y, Ni B J, Jiang B Q, Xu L, Wang Q. Fabrication of CN75/NH2-MIL-53(Fe) p-n Heterojunction with Wide Spectral Response for Efficiently Photocatalytic Cr (Ⅵ) Reduction[J]. J. Alloy. Compd., 2022,891161994. doi: 10.1016/j.jallcom.2021.161994

    18. [18]

      Chu C C, Miao W, Li Q J, Wang D D, Liu Y, Mao S. Highly Efficient Photocatalytic H2O2 Production with Cyano and SnO2 Co-Modified g-C3N4[J]. Chem. Eng. J., 2022,428132531. doi: 10.1016/j.cej.2021.132531

    19. [19]

      Wang Y, Wang X C, Antonietti M, Zhang Y J. Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates[J]. ChemSusChem, 2010,3:435-439. doi: 10.1002/cssc.200900284

    20. [20]

      Grape E S, Flores J G, Hidalgo T, Martinez-Ahumada E, Gutierrez-Alejandre A, Hautier A, Williams D R, O'Keeffe M, Ohrstrom L, Willhammar T, Horcajada P, Ibarra I A, Inge A K. A Robust and Biocompatible Bismuth Ellagate MOF Synthesized under Green Ambient Conditions[J]. J. Am. Chem. Soc., 2020,142:16795-16804. doi: 10.1021/jacs.0c07525

    21. [21]

      Tan M, Gao Q Y, Fu Y J, Xu Y R, Hao D, Ni B J, Wang Q. Fabrication of Visible-Light-Active Fe-2MI Film Electrode for Simultaneous Removal of Cr(Ⅵ) and Phenol[J]. Mat. Sci. Semicon. Proc., 2022,151107013. doi: 10.1016/j.mssp.2022.107013

    22. [22]

      Zhang S Y, Yang Y, Zhai Y P, Wen J Q, Zhang M, Yu J K, Lu S Y. A Novel P-Doped and NCDs Loaded g-C3N4 with Enhanced Charges Separation for Photocatalytic Hydrogen Evolution[J]. Chin. Chem. Lett., 2022,228417.

    23. [23]

      Huang D, Sun X B, Liu Y D, Ji H D, Liu W, Wang C C, Ma W Y, Cai Z Q. A Carbon-Rich g-C3N4 with Promoted Charge Separation for Highly Efficient Photocatalytic Degradation of Amoxicillin[J]. Chin. Chem. Lett., 2021,32:2787-2791. doi: 10.1016/j.cclet.2021.01.012

    24. [24]

      Wang K, Li Q, Liu B S, Cheng B, Ho W K, Yu J G. Sulfur-Doped g-C3N4 with Enhanced Photocatalytic CO2-Reduction Performance[J]. Appl. Catal. B-Environ., 2015,176-177:44-52. doi: 10.1016/j.apcatb.2015.03.045

    25. [25]

      Zhou S Q, Wang Y, Zhou K, Ba D Y, Ao Y H, Wang P F. In-Situ Construction of Z-Scheme g-C3N4/WO3 Composite with Enhanced Visible-Light Responsive Performance for Nitenpyram Degradation[J]. Chin. Chem. Lett., 2021,32:2179-2182. doi: 10.1016/j.cclet.2020.12.002

    26. [26]

      Wang Q, Chen C C, Ma W H, Zhu H Y, Zhao J C. Pivotal Role of Fluorine in Tuning Band Structure and Visible-Light Photocatalytic Activity of Nitrogen-Doped TiO2[J]. Chem. Eur. J., 2009,15:4765-4769. doi: 10.1002/chem.200900221

    27. [27]

      Guo J, Ma D, Sun F, Zhuang G, Wang Q, Al-Enizi A, Nafady A, Ma S. Substituent Engineering in g-C3N4/COF Heterojunctions for Rapid Charge Separation and High Photo-Redox Activity[J]. Sci. China Chem., 2022,65:1704-1709.

    28. [28]

      Juan J T, María A G, Litter M I. Heterogeneous Photocatalytic Reduction of Chromium (Ⅵ) over TiO2 Particles in the Presence of Oxalate Involvement of Cr(Ⅴ) Species[J]. Environ. Sci. Technol., 2004,38:1589-1594. doi: 10.1021/es0346532

    29. [29]

      Li S J, Cai M J, Wang C C, Liu Y P, Li N, Zhang P, Li X. Rationally Designed Ta3N5/BiOCl S-Scheme Heterojunction with Oxygen Vacancies for Elimination of Tetracycline Antibiotic and Cr(Ⅵ): Performance, Toxicity Evaluation and Mechanism Insight[J]. J. Mater. Sci. Technol., 2022,123:177-190. doi: 10.1016/j.jmst.2022.02.012

  • 加载中
    1. [1]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    2. [2]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    3. [3]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    8. [8]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    9. [9]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

Metrics
  • PDF Downloads(30)
  • Abstract views(1874)
  • HTML views(557)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return