Citation: Biao XUE, Yang-Jie FU, Meng TAN, Chao ZHANG, Ning-Yi LI, Ling-Xuan YANG, Shu-Zhen ZHENG, Qi WANG. Preparation and Visible Light Photocatalytic Properties of N and F Co-doped C3N4[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2047-2055. doi: 10.11862/CJIC.2022.204 shu

Preparation and Visible Light Photocatalytic Properties of N and F Co-doped C3N4

Figures(10)

  • To overcome the shortcomings of carbon nitride (C3N4), such as easily recombination of photogenerated charges and limited photocatalytic activity, this study explored a method to prepare NF-C3N4 via co-doping of N and F into C3N4 with improved photocatalytic performance.Using HF and NH3 produced by the in-situ decomposition of NH4F at high temperature, dual elements doping was achieved while etching C3N4.N-doped C3N4 (N-C3N4) was prepared by using ammonium chloride (NH4Cl) as a control sample.The effects of N and F co-doping on the morphology, composition, structure, and physicochemical properties of C3N4 were studied using scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), specific surface area, and electrochemistry.Compared with C3N4 and N-C3N4, NF-C3N4 had porous and increased specific surface area, and the generation, separation, and transfer of photogenerated charges were promoted.The photocatalytic reduction rate of Cr(Ⅵ) by NF-C3N4 was 2.6 times that of C3N4 and 1.7 times that of N-C3N4, respectively.The influence of different precursors(urea, dicyandiamide, and melamine)on the preparation of C3N4 was further investigated.It was found that when the mass ratio of C3N4 with urea as a precursor to NH4F was 3∶2, NF-C3N4 showed the best photocatalytic performance.Furthermore, the reduction rate of Cr(Ⅵ) can be enhanced with the increase of catalyst dosage, light intensity, hole trapping agent concentration, and decrease in pH.After 40 min visible light irradiation with 0.1 g·L-1 NF-C3N4, pH=3 and cEDTA-2Na=2 mmol·L-1, the Cr(Ⅵ) removal efficiency reached 90%.Five cyclic runs indicated that the optimized NF-C3N4 remained good performance and high stability for photocatalytic reduction of Cr(Ⅵ).
  • 加载中
    1. [1]

      Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability?[J]. Chem. Rev., 2016,116:7159-7329. doi: 10.1021/acs.chemrev.6b00075

    2. [2]

      Chang Q, Yang S S, Li L Q, Xue C R, Li Y, Wang Y Z, Hu S L, Yang J L, Zhang F. Loading Sulfur and Nitrogen Co-doped Carbon Dots onto g-C3N4 Nanosheets for an Efficient Photocatalytic Reduction of 4-Nitrophenol[J]. Dalton Trans., 2018,47:6435-6443. doi: 10.1039/C8DT00735G

    3. [3]

      Xing Y P, Wang X K, Hao S H, Zhang X L, Wang X, Ma W, Zhao G, Xu X. Recent Advances in the Improvement of g-C3N4 Based Photocatalytic Materials[J]. Chin. Chem. Lett., 2021,32:13-20. doi: 10.1016/j.cclet.2020.11.011

    4. [4]

      Liu J H, Li W F, Duan L M, Li X, Ji L, Geng Z B, Huang K K, Lu L H, Zhou L S, Liu Z R, Chen W, Liu L W, Feng S H, Zhang Y G. A Graphene-like Oxygenated Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur Batteries[J]. Nano Lett., 2015,15:5137-5142. doi: 10.1021/acs.nanolett.5b01919

    5. [5]

      Mo Z, She X, Li Y, Liu L, Huang L, Chen Z, Zhang Q, Xu H, Li H. Synthesis of g-C3N4 at Different Temperatures for Superior Visible/UV Photocatalytic Performance and Photoelectrochemical Sensing of MB Solution[J]. RSC Adv., 2015,5:101552-101562. doi: 10.1039/C5RA19586A

    6. [6]

      WANG Y Q, SHEN S H. Progress and Prospects of Non-metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances[J]. Acta Phys.-Chim. Sin., 2020,361905080. doi: 10.3866/PKU.WHXB201905080

    7. [7]

      Zhou Y J, Zhang L X, Huang W M, Kong Q L, Fan X Q, Wang M, Shi J L. N-Doped Graphitic Carbon-Incorporated g-C3N4 for Remarkably Enhanced Photocatalytic H2 Evolution under Visible Light[J]. Carbon, 2016,99:111-117. doi: 10.1016/j.carbon.2015.12.008

    8. [8]

      Wang Y, Di Y, Antonietti M, Li H R, Chen X F, Wang X C. Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids[J]. Chem. Mater., 2010,22:5119-5121. doi: 10.1021/cm1019102

    9. [9]

      Shevlin S A, Guo Z X. Anionic Dopants for Improved Optical Absorption and Enhanced Photocatalytic Hydrogen Production in Graphitic Carbon Nitride[J]. Chem. Mater., 2016,28:7250-7256. doi: 10.1021/acs.chemmater.6b02002

    10. [10]

      Hu S Z, Ma L, Xie Y, Li F Y, Fan Z P, Wang F, Wang Q, Wang Y J, Kang X X, Wu G. Hydrothermal Synthesis of Oxygen Functionalized S-P Codoped g-C3N4 Nanorods with Outstanding Visible Light Activity under Anoxic Conditions[J]. Dalton Trans., 2015,44:20889-20897. doi: 10.1039/C5DT04035C

    11. [11]

      Zhang H, Zhao Z B, Hou Y N, Tang Y C, Dong Y F, Wang S, Hu X J, Zhang Z C, Wang X Z, Qiu J S. Nanopore-Confined g-C3N4 Nanodots in N, S Co-doped Hollow Porous Carbon with Boosted Capacity for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2018,6:7133-7141. doi: 10.1039/C8TA00529J

    12. [12]

      Huang Y Q, Yan Q, Yan H J, Tang Y Q, Chen S, Yu Z Y, Tian C G, Jiang B J. Layer Stacked Lodine and Phosphorus Co-doped C3N4 for Enhanced Visible-Light Photocatalytic Hydrogen Evolution[J]. ChemCatChem, 2017,9:4083-4089. doi: 10.1002/cctc.201700786

    13. [13]

      Wang Q, Zhu N X, Liu E Q, Zhang C L, Crittenden J C, Zhang Y, Cong Y Q. Fabrication of Visible-Light Active Fe2O3-GQDs/NF-TiO2 Composite Film with Highly Enhanced Photoelectrocatalytic Performance[J]. Appl. Catal. B-Environ., 2017,205:347-356. doi: 10.1016/j.apcatb.2016.11.046

    14. [14]

      Liu C Y, Huang H W, Cui W, Dong F, Zhang Y H. Band Structure Engineering and Efficient Charge Transport in Oxygen Substituted g-C3N4 for Superior Photocatalytic Hydrogen Evolution[J]. Appl. Catal. B-Environ., 2018,230:115-124. doi: 10.1016/j.apcatb.2018.02.038

    15. [15]

      Wang Q, Chen C, Zhao D, Ma W H, Zhao J. Change of Adsorption Modes of Dyes on Fluorinated TiO2 and Its Effect on Photocatalytic Degradation of Dyes under Visible Irradiation[J]. Langmuir, 2008,24:7338-7345. doi: 10.1021/la800313s

    16. [16]

      Fu Y J, Zhang K J, Zhang Y, Cong Y Q, Wang Q. Fabrication of Visible-Light-Active MR/NH2-MIL-125(Ti) Homojunction with Boosted Photocatalytic Performance[J]. Chem. Eng. J., 2021,412128722. doi: 10.1016/j.cej.2021.128722

    17. [17]

      Zhang K J, Fu Y J, Hao D R, Guo J Y, Ni B J, Jiang B Q, Xu L, Wang Q. Fabrication of CN75/NH2-MIL-53(Fe) p-n Heterojunction with Wide Spectral Response for Efficiently Photocatalytic Cr (Ⅵ) Reduction[J]. J. Alloy. Compd., 2022,891161994. doi: 10.1016/j.jallcom.2021.161994

    18. [18]

      Chu C C, Miao W, Li Q J, Wang D D, Liu Y, Mao S. Highly Efficient Photocatalytic H2O2 Production with Cyano and SnO2 Co-Modified g-C3N4[J]. Chem. Eng. J., 2022,428132531. doi: 10.1016/j.cej.2021.132531

    19. [19]

      Wang Y, Wang X C, Antonietti M, Zhang Y J. Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates[J]. ChemSusChem, 2010,3:435-439. doi: 10.1002/cssc.200900284

    20. [20]

      Grape E S, Flores J G, Hidalgo T, Martinez-Ahumada E, Gutierrez-Alejandre A, Hautier A, Williams D R, O'Keeffe M, Ohrstrom L, Willhammar T, Horcajada P, Ibarra I A, Inge A K. A Robust and Biocompatible Bismuth Ellagate MOF Synthesized under Green Ambient Conditions[J]. J. Am. Chem. Soc., 2020,142:16795-16804. doi: 10.1021/jacs.0c07525

    21. [21]

      Tan M, Gao Q Y, Fu Y J, Xu Y R, Hao D, Ni B J, Wang Q. Fabrication of Visible-Light-Active Fe-2MI Film Electrode for Simultaneous Removal of Cr(Ⅵ) and Phenol[J]. Mat. Sci. Semicon. Proc., 2022,151107013. doi: 10.1016/j.mssp.2022.107013

    22. [22]

      Zhang S Y, Yang Y, Zhai Y P, Wen J Q, Zhang M, Yu J K, Lu S Y. A Novel P-Doped and NCDs Loaded g-C3N4 with Enhanced Charges Separation for Photocatalytic Hydrogen Evolution[J]. Chin. Chem. Lett., 2022,228417.

    23. [23]

      Huang D, Sun X B, Liu Y D, Ji H D, Liu W, Wang C C, Ma W Y, Cai Z Q. A Carbon-Rich g-C3N4 with Promoted Charge Separation for Highly Efficient Photocatalytic Degradation of Amoxicillin[J]. Chin. Chem. Lett., 2021,32:2787-2791. doi: 10.1016/j.cclet.2021.01.012

    24. [24]

      Wang K, Li Q, Liu B S, Cheng B, Ho W K, Yu J G. Sulfur-Doped g-C3N4 with Enhanced Photocatalytic CO2-Reduction Performance[J]. Appl. Catal. B-Environ., 2015,176-177:44-52. doi: 10.1016/j.apcatb.2015.03.045

    25. [25]

      Zhou S Q, Wang Y, Zhou K, Ba D Y, Ao Y H, Wang P F. In-Situ Construction of Z-Scheme g-C3N4/WO3 Composite with Enhanced Visible-Light Responsive Performance for Nitenpyram Degradation[J]. Chin. Chem. Lett., 2021,32:2179-2182. doi: 10.1016/j.cclet.2020.12.002

    26. [26]

      Wang Q, Chen C C, Ma W H, Zhu H Y, Zhao J C. Pivotal Role of Fluorine in Tuning Band Structure and Visible-Light Photocatalytic Activity of Nitrogen-Doped TiO2[J]. Chem. Eur. J., 2009,15:4765-4769. doi: 10.1002/chem.200900221

    27. [27]

      Guo J, Ma D, Sun F, Zhuang G, Wang Q, Al-Enizi A, Nafady A, Ma S. Substituent Engineering in g-C3N4/COF Heterojunctions for Rapid Charge Separation and High Photo-Redox Activity[J]. Sci. China Chem., 2022,65:1704-1709.

    28. [28]

      Juan J T, María A G, Litter M I. Heterogeneous Photocatalytic Reduction of Chromium (Ⅵ) over TiO2 Particles in the Presence of Oxalate Involvement of Cr(Ⅴ) Species[J]. Environ. Sci. Technol., 2004,38:1589-1594. doi: 10.1021/es0346532

    29. [29]

      Li S J, Cai M J, Wang C C, Liu Y P, Li N, Zhang P, Li X. Rationally Designed Ta3N5/BiOCl S-Scheme Heterojunction with Oxygen Vacancies for Elimination of Tetracycline Antibiotic and Cr(Ⅵ): Performance, Toxicity Evaluation and Mechanism Insight[J]. J. Mater. Sci. Technol., 2022,123:177-190. doi: 10.1016/j.jmst.2022.02.012

  • 加载中
    1. [1]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    17. [17]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

Metrics
  • PDF Downloads(14)
  • Abstract views(750)
  • HTML views(261)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return