Citation: Dong-Bin CHEN, Jing-Ya DING, Guo-Lin ZHANG, Lan FAN, Lin SUN, Feng CHENG, Yong-Long LIU, Yi-Ke CHEN, Qi XU. Manganese Supported Nitrogen-Doped Graphene and Performance of Catalytic Decomposition High-Humidity Ozone[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2072-2082. doi: 10.11862/CJIC.2022.203 shu

Manganese Supported Nitrogen-Doped Graphene and Performance of Catalytic Decomposition High-Humidity Ozone

Figures(12)

  • Nitrogen - doped graphene (NG) was synthesized by thermal annealing of graphene oxide (GO) using melamine as the nitrogen source, and NG-loaded manganese (Mn/NG) was prepared using the immersion precipitation method. At 80% relative humidity (RH) and an initial ozone concentration of 85.7 mg·m-3, the decomposition rate of ozone remained above 80% after 24 h of reaction. Under the low RH environment, the catalytic activity can be restored to the initial state again. The nitrogen doping not only created structural defects for the catalyst, but also the lone pair electrons of nitrogen atoms increased the electron density of oxygen vacancies, reduced the adsorption energy of water molecules, and improved the moisture resistance of the catalyst.
  • 加载中
    1. [1]

      Batakliev T, Georgiev V, Anachkov M, Rakovsky S, Zaikov G E. Ozone Decomposition[J]. Interdiscip Toxicol., 2014,7(2):47-59. doi: 10.2478/intox-2014-0008

    2. [2]

      Namdari M, Lee C S, Haghighat F. Active Ozone Removal Technologies for a Safe Indoor Environment: A Comprehensive Review[J]. Build. Sci., 2021,187107370.

    3. [3]

      ZHANG L H, GAO W W, CHEN Z C, ZHOU J, WANG X M, ZHANG H F. CoAl2O4/Ceramic Honeycomb Catalyst: Preparation and Performance on Catalytic Ozonation in Wastewater Treatment[J]. Chinese J. Inorg. Chem., 2017,33(6):985-992.  

    4. [4]

      Shao M, Zhang Y H, Zeng L M, Tang X Y, Zhang J, Zhong L J, Wang B G. Ground-Level Ozone in the Pearl River Delta and the Roles of VOC and NO x in Its Production[J]. J. Environ. Manage., 2009,90(1):512-518. doi: 10.1016/j.jenvman.2007.12.008

    5. [5]

      Wolkoff P. Indoor Air Pollutants in Office Environments: Assessment of Comfort, Health, and Performance[J]. Int. J. Hyg. Environ. Health, 2013,216(4):371-394. doi: 10.1016/j.ijheh.2012.08.001

    6. [6]

      Tao Y B, Huang W, Huang X L, Zhong L J, Lu S E, Li Y, Dai L Z, Zhang Y H, Zhu T. Estimated Acute Effects of Ambient Ozone and Nitrogen Dioxide on Mortality in the Pearl River Delta of Southern China[J]. Environ. Health Perspect., 2012,120(3):393-398. doi: 10.1289/ehp.1103715

    7. [7]

      Gao W, Tie X X, Xu J M, Huang R J, Mao X Q, Zhou G Q, Chang L Y. Long-Term Trend of O3 in a Mega City (Shanghai), China: Characteristics, Causes, and Interactions with Precursors[J]. Sci. Total Environ., 2017,603:425-433.

    8. [8]

      ZHOU L N, CHEN Y Q, REN C J, GONG M C. Pd/MnOx+Pd/γ-Al2O3 Monolith Catalysts for Ground-Level Ozone Decomposition[J]. Chinese J. Inorg. Chem., 2013,29(11):2363-2369.  

    9. [9]

      Kotelnikov S N, Stepanov E V. Role of Aqueous Aerosols in Ozone Decomposition in the Near-Surface Atmosphere[J]. Bull. Lebedev Phys. Inst., 2019,46(9):284-288. doi: 10.3103/S1068335619090045

    10. [10]

      Hellen H, Kuronen P, Hakola H. Heated Stainless Steel Tube for Ozone Removal in the Ambient Air Measurements of Mono - and Sesquiterpenes[J]. Atmos. Environ., 2012,57:35-40. doi: 10.1016/j.atmosenv.2012.04.019

    11. [11]

      Schumacher , Joachim H. The Mechanism of the Photochemical Decomposition of Ozone[J]. J. Am. Chem. Soc., 1930,52(6):2377-2391. doi: 10.1021/ja01369a026

    12. [12]

      SUN Y H, ZHANG M, YANG J J. Preparationand Characterization of Bimetal Core - Shell Structure Supported Au@Ag/TiO2 Catalyst[J]. Chinese J.Inorg. Chem., 2009,25(11):1965-1970. doi: 10.3321/j.issn:1001-4861.2009.11.014

    13. [13]

      Brodu N, Manero M H, Andriantsiferana C, Pic J S, Valdes H. Role of Lewis Acid Sites of ZSM-5 Zeolite on Gaseous Ozone Abatement[J]. Chem. Eng. J., 2013,231:281-286. doi: 10.1016/j.cej.2013.07.002

    14. [14]

      Wang H, Rassu P, Wang X, Li H W, Wang X R, Wang X Q, Feng X, Yin A X, Li P F, Jin X, Chen S L, Ma X J, Wang B. An Iron-Containing Metal-Organic Framework as a Highly Efficient Catalyst for Ozone Decomposition[J]. Angew. Chem. Int. Ed., 2018,57(50):16416-16420. doi: 10.1002/anie.201810268

    15. [15]

      Jia J B, Zhang P Y, Chen L. The Effect of Morphology of α-Mno2 on Catalytic Decomposition of Gaseous Ozone[J]. Catal. Sci. Technol., 2016,6(15):5841-5847. doi: 10.1039/C6CY00301J

    16. [16]

      Xu Z H, Yang W H, Si W Z, Chen J J, Peng Y, Li J H. A Novel γlike MnO2 Catalyst for Ozone Decomposition in High Humidity Conditions[J]. J. Hazard. Mater., 2021,420126641. doi: 10.1016/j.jhazmat.2021.126641

    17. [17]

      Liu Y, Yang W J, Zhang P Y, Zhang J Y. Nitric Acid-Treated Birnessite- Type MnO2: An Efficient and Hydrophobic Material for Humid Ozone Decomposition[J]. Appl. Surf. Sci., 2018,422:640-649.

    18. [18]

      Zhu G X, Zhu W, Lou Y, Ma J, Yao W Q, Zong R L, Zhu Y F. Encapsulate α-MnO2 Nanofiber within Graphene Layer to Tune Surface Electronic Structure for Efficient Ozone Decomposition[J]. Nat. Commun., 2021,12(1)4152. doi: 10.1038/s41467-021-24424-x

    19. [19]

      Zhang L, Yang J W, Wang A Q, Chai S H, Guan J, Nie L F, Fan G J, Han N, Chen Y F. High Performance Ozone Decomposition Spinel (Mn, Co)3O4 Catalyst Accelerating the Rate-Determining Step[J]. Appl. Catal. B-Environ., 2022,30120957.

    20. [20]

      Yu Y, Ji J, Li K, Huang H B, Shrestha R P, Oanh N T K, Winijkul E, Deng J G. Activated Carbon Supported MnO Nanoparticles for Efficient Ozone Decomposition at Room Temperature[J]. Catal. Today, 2020,355:573-579. doi: 10.1016/j.cattod.2019.05.063

    21. [21]

      Ma J Z, Wang C X, He H. Transition Metal Doped Cryptomelane- Type Manganese Oxide Catalysts for Ozone Decomposition[J]. Appl. Catal. B-Environ., 2017,201:503-510. doi: 10.1016/j.apcatb.2016.08.050

    22. [22]

      Dato A, Lee Z, Jeon K J, Erni R, Radmilovic V, Richardson T J, Frenklach M. Clean and Highly Ordered Graphene Synthesized in the Gas Phase[J]. Chem. Commun., 2009,40:6095-6097.

    23. [23]

      Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. Catalyst- Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis[J]. ACS Nano, 2011,5(6):4350-4358. doi: 10.1021/nn103584t

    24. [24]

      Pieta I S, Rathi A, Pieta P, Nowakowski R, Holdynski M, Pisarek M, Kaminska A, Gawande M B, Zboril R. Electrocatalytic Methanol Oxidation over Cu, Ni and Bimetallic Cu-Ni nanoparticles Supported on Graphitic Carbon Nitride[J]. Appl. Catal. B -Environ., 2019,244:272-283. doi: 10.1016/j.apcatb.2018.10.072

    25. [25]

      Li X L, Wang H L, Robinson J T, Sanchez H, Diankov G, Dai H J. Simultaneous Nitrogen Doping and Reduction of Graphene Oxide[J]. J. Am. Chem. Soc., 2009,131(43):15939-15944. doi: 10.1021/ja907098f

    26. [26]

      Sun Q L, Tang M, Hendriksen P V, Chen B. Biotemplated Fabrication of a 3D Hierarchical Structure of Magnetic ZnFe2O4/MgAl-LDH for Efficient Elimination of Dye from Water[J]. J. Alloy. Compd., 2020,829154552. doi: 10.1016/j.jallcom.2020.154552

    27. [27]

      Liu Z, Guo R T, Meng J S, Liu X, Wang X P, Li Q, Mai L Q. Facile Electrospinning Formation of Carbon-Confined Metal Oxide Cubein-Tube Nanostructures for Stable Lithium Storage[J]. Chem. Commun., 2017,53(59):8284-8287. doi: 10.1039/C7CC03727A

    28. [28]

      Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing[J]. ACS Nano, 2010,4(4):1790-1798. doi: 10.1021/nn100315s

    29. [29]

      Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009,323(5915):760-764. doi: 10.1126/science.1168049

    30. [30]

      Yang H, Gong L Q, Wang H M, Dong C L, Wa ng, J L, Qi K, Liu H F, Guo X P, Xia B Y. Preparation of Nickel-Iron Hydroxides by Microorganism Corrosion for Efficient Oxygen Evolution[J]. Nat. Commun., 2020,115075. doi: 10.1038/s41467-020-18891-x

    31. [31]

      Wang H, Peng B, Zhang R D, Chen H X, Wei Y. Synergies of Mn Oxidative Ability and ZSM-5 Acidity for 1, 2-Dichloroethane Catalytic Elimination[J]. Appl. Catal. B-Environ., 2020,276118922. doi: 10.1016/j.apcatb.2020.118922

    32. [32]

      Liu S L, Ji J, Yu Y, Huang H B. Facile Synthesis of Amorphous Mesoporous Manganese Oxides for Efficient Catalytic Decomposition of Ozone[J]. Catal. Sci. Technol., 2018,8:4264-4273. doi: 10.1039/C8CY01111G

    33. [33]

      Liu J, Ke J, Li D G, Sun H Q, Liang P, Duan X G, Tian W J, Tade M O, Liu S M, Wang S B. Oxygen Vacancies in Shape Controlled Cu2O/ Reduced Graphene Oxide/In2O3 Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants[J]. ACS Appl. Mater. Interfaces, 2017,9(13):11678-11688. doi: 10.1021/acsami.7b01605

    34. [34]

      Yang W J, Ren J N, Li J J, Zhang H W, Ma K, Wang Q W, Gao Z Y, Wu C C, Gates I D. A Novel Fe-Co Double-Atom Catalyst with High Low-Temperature Activity and Strong Water-Resistant for O3 Decomposition: A Theoretical Exploration[J]. J. Hazard. Mater., 2022,421126639. doi: 10.1016/j.jhazmat.2021.126639

    35. [35]

      Yang W J, Gao Z Y, Liu X S, Li X, Ding X L, Yan W P. Single-Atom Iron Catalyst with Single- Vacancy Graphene-Based Substrate as a Novel Catalyst for NO oxidation: A Theoretical Study[J]. Catal. Sci. Technol., 2018,8(16):4159-4168. doi: 10.1039/C8CY01225C

  • 加载中
    1. [1]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    2. [2]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    3. [3]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    4. [4]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    5. [5]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    6. [6]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    7. [7]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    8. [8]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    9. [9]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    10. [10]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    11. [11]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    12. [12]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    13. [13]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    14. [14]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    15. [15]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    16. [16]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    17. [17]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    18. [18]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    19. [19]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    20. [20]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

Metrics
  • PDF Downloads(7)
  • Abstract views(465)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return