Citation: Hui GUO, Tao WANG, Wen-Qing SU, Dan LI, Xing-Xing CHEN, Jie-Ying WU, Qiong ZHANG, Yu-Peng TIAN. Synthesis, Structure, and Interaction with DNA of Alkoxy Tribipyridine Ruthenium Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2019-2027. doi: 10.11862/CJIC.2022.202 shu

Synthesis, Structure, and Interaction with DNA of Alkoxy Tribipyridine Ruthenium Complexes

Figures(10)

  • Two ruthenium complexes (Ru-Cl, Ru-NCMe) containing long alkoxy tribipyridine and 2, 2′-bipyridine were synthesized and characterized by mass spectrometry, NMR, single crystal X-ray diffraction analysis, etc. Based on their crystal structural information, it can be found that the sixth coordination position in complex Ru-Cl is Cl- ion, and the sixth coordination position in complex Ru-NCME is N atom in acetonitrile molecule. The interaction of the two complexes with various amino acids and DNA was studied by UV-Vis absorption and fluorescence spectros-copy. It was found that the complexes with long alkyl chains and rigid coordination planes had an obvious specific recognition effect on DNA. Further study found that they could bind DNA in the way of insertion and electrostatic. Both results of the experiments and the theoretical calculation were consistent.
  • 加载中
    1. [1]

      Wang W J, Mu X, Tan C P, Wang Y J, Zhang Y B, Li G H, Mao Z W. Induction and Monitoring of DNA Phase Separation in Living Cells by a Light-Switching Ruthenium Complex[J]. J. Am. Chem. Soc., 2021,143(30):11370-11381. doi: 10.1021/jacs.1c01424

    2. [2]

      Zhang H W, Tian L, Xiao R X, Zhou Y, Zhang Y Y, Hao J, Liu Y J, Wang J P. Anticancer Effect Evaluation In Vitro and In Vivo of Iridium (Ⅲ) Polypyridyl Complexes Targeting DNA and Mitochondria[J]. Bioorgan. Chem., 2021,115105290. doi: 10.1016/j.bioorg.2021.105290

    3. [3]

      Zamora A, Wachter E, Vera M, Heidary D, Rodríguez V, Ortega E, Fernández-Espín V, Janiak C, Glazer E C, Barone G, Ruiz J. Organoplatinum(Ⅱ) Complexes Self-Assemble and Recognize AT-Rich Duplex DNA Sequences[J]. Inorg. Chem., 2021,60(4):2178-2187. doi: 10.1021/acs.inorgchem.0c02648

    4. [4]

      Hoque M A, Chowdhury A D, Maji S, Benet-Buchholz J, Ertem M Z, Gimbert-Suriñach C, Lahiri G K, Llobet A. Synthesis, Characterization, and Water Oxidation Activity of Isomeric Ru Complexes[J]. Inorg. Chem., 2021,60(8):5791-5803. doi: 10.1021/acs.inorgchem.1c00112

    5. [5]

      Arora K, Herroon M, Al-Afyouni M H, Toupin N P, Rohrabaugh T N, Loftus L M, Podgorski I, Turro C, Kodanko J J. Catch and Release Photosensitizers: Combining Dual-Action Ruthenium Complexes with Protease Inactivation for Targeting Invasive Cancers[J]. J. Am. Chem. Soc., 2018,140(43):14367-14380. doi: 10.1021/jacs.8b08853

    6. [6]

      Li B F, Zhou X M, Liu H X, Deng H P, Huang R, Xing D. Simultaneous Detection of Antibiotic Resistance Genes on Paper - Based Chip Using[Ru(phen)2dppz]2+ Turn - On Fluorescence Probe[J]. ACS Appl. Mater. Interfaces, 2018,10(5):4494-4501. doi: 10.1021/acsami.7b17653

    7. [7]

      Toupin N, Steinke S J, Nadella S, Li A, Rohrabaugh T N, Samuels E R, Turro C, Sevrioukova I F, Kodanko J J. Photosensitive Ru(Ⅱ) Complexes as Inhibitors of the Major Human Drug Metabolizing Enzyme CYP3A4[J]. J. Am. Chem. Soc., 2021,143(24):9191-9205. doi: 10.1021/jacs.1c04155

    8. [8]

      Conti L, Mengoni A, Giacomazzo G E, Mari L, Perfetti M, Fagorzi C, Sorace L, Valtancoli B, Giorgi C. Exploring the Potential of Highly Charged Ru(Ⅱ)- and Heteronuclear Ru(Ⅱ)/Cu(Ⅱ)-Polypyridyl Complexes as Antimicrobial Agents[J]. J. Inorg. Biochem., 2021,220111467. doi: 10.1016/j.jinorgbio.2021.111467

    9. [9]

      Scoditti S, Dabbish E, Russo N, Mazzone G, Sicilia E. Anticancer Activity, DNA Binding, and Photodynamic Properties of a N∧C∧N-Coordinated Pt(Ⅱ) Complex[J]. Inorg. Chem., 2021,60(14):10350-10360. doi: 10.1021/acs.inorgchem.1c00822

    10. [10]

      Fairbanks S D, Robertson C C, Keene F R, Thomas J A, Williamson M P. trans-Hydrogenation, gem-Hydrogenation, and trans-Hydrometalation of Alkynes: An Interim Report on an Unorthodox Reactivity Paradigm[J]. J. Am. Chem. Soc., 2018,141(1):11-24.

    11. [11]

      Almaqwashi A A, Zhou W, Naufer M N, Riddell I A, Yilmaz Ö H, Lippard S J, Williams M C. DNA Intercalation Facilitates Efficient DNA-Targeted Covalent Binding of Phenanthriplatin[J]. J. Am. Chem. Soc., 2019,141(4):537-1545.

    12. [12]

      Tan C P, Liu J, Chen L M, Shi S, Ji L N. Synthesis, Structural Characteristics, DNA Binding Properties and Cytotoxicity Studies of a Series of Ru (Ⅲ) Complexes[J]. J. Inorg. Biochem., 2008,102(8):1644-1653. doi: 10.1016/j.jinorgbio.2008.03.005

    13. [13]

      Qian C, Wu J H, Ji L N, Chao H. Topoisomerase Ⅱα Poisoning and DNA Double - Strand Breaking by Chiral Ruthenium (Ⅱ) Complexes Containing 2 - Furanyl - imidazo[4,5-f][1,10]phenanthroline Derivatives[J]. Dalton Trans., 2016,45(26):10546-10555. doi: 10.1039/C6DT01422D

    14. [14]

      Zhang C, Guan R L, Liao X X, Cheng O Y, Liu J P, Ji L N, Chao H. Mitochondrial DNA Targeting and Impairment by a Dinuclear Ir-Pt Complex that Overcomes Cisplatin Resistance[J]. Inorg. Chem. Front., 2020,7(9):1864-1871. doi: 10.1039/D0QI00224K

    15. [15]

      Huang H Y, Zhang P Y, Chen Y, Qiu K Q, Jin C Z, Ji L N, Chao H. Synthesis, Characterization and Biological Evaluation of Labile Intercalative Ruthenium (Ⅱ) Complexes for Anticancer Drug Screening[J]. Dalton Trans., 2016,45(33):13135-13145. doi: 10.1039/C6DT01270A

    16. [16]

      Shen J C, Rees T W, Ji L N, Chao H. Recent Advances in Ruthenium(Ⅱ) and Iridium(Ⅲ) Complexes Containing Nanosystems for Cancer Treatment and Bioimaging[J]. Coord. Chem. Rev., 2021,443214016. doi: 10.1016/j.ccr.2021.214016

    17. [17]

      Yu B L, Rees T W, Liang J W, Jin C Z, Chen Y, Ji L N, Chao H. DNA Interaction of Ruthenium(Ⅱ) Complexes with Imidazo[4, 5-f][1, 10]phenanthroline Derivatives[J]. Dalton Trans., 2019,48(12):3914-3921. doi: 10.1039/C9DT00454H

    18. [18]

      Liu J G, Lai H Q, Xiong Z S, Chen B L, Chen T F. Functionalization and Cancer-Targeting Design of Ruthenium Complexes for Precise Cancer Therapy[J]. Chem. Commun., 2019,55(67):9904-9914. doi: 10.1039/C9CC04098F

    19. [19]

      Monro S, Colon K L, Yin H M, Roque J, Konda P, Gujar S, Thummel R P, Lilge L, Cameron C G, McFarland S A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433[J]. Chem. Rev., 2018,119(2):797-828.

    20. [20]

      WANG S C. Design, Synthesis, Properties of Mono-, Di-/Trinuclear Pt (Ⅱ), Ru (Ⅱ) Complexes Containing Polypyridine Ligand. Hefei: Anhui University, 2015.

    21. [21]

      Zhang H M, Wang Y, Wang Y Q, Han Q Q, Yan H H, Yang T, Guo Z J, Wang X Y. Platinum Complexes as Inhibitors of DNA Repair Protein Ku70 and Topoisomerase Ⅱα in Cancer Cells[J]. Dalton Trans., 2022,51(8):3188-3197. doi: 10.1039/D1DT03700E

    22. [22]

      Sangeetha S, Murali M. Cytotoxic Ruthenium(Ⅱ) Complexes Containing a Dangling Pyridine: Selectivity for Diseased Cells Mediated by pH-Dependent DNA Binding[J]. Inorg. Chem., 2022,61(6):2864-2882. doi: 10.1021/acs.inorgchem.1c03399

    23. [23]

      Yao Q C, Li H D, Xian L M, Xu F, Xia J, Fan J L, Du J J, Wang J Y, Peng X J. Differentiating RNA from DNA by a Molecular Fluorescent Probe Based on the "Door-Bolt" Mechanism Biomaterials[J]. Biomaterials, 2018,177:78-87. doi: 10.1016/j.biomaterials.2018.05.050

    24. [24]

      Fairbanks S D, Robertson C C, Keene F R, Thomas J A, Williamson M P. Structural Investigation into the Threading Intercalation of a Chiral Dinuclear Ruthenium (Ⅱ) Polypyridyl Complex through a B-DNA Oligonucleotide[J]. J. Am. Chem. Soc., 2019,141(11):4644-4652. doi: 10.1021/jacs.8b12280

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    12. [12]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    20. [20]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

Metrics
  • PDF Downloads(6)
  • Abstract views(558)
  • HTML views(175)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return