Citation: Xin TONG, Shi-Sheng ZHAO, Xi CHU, Wen-Hao LI, Hong-Yan LI. Two Iridium Complexes Containing Aldehyde Group for Cysteine and OH- Recognition[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1939-1947. doi: 10.11862/CJIC.2022.201 shu

Two Iridium Complexes Containing Aldehyde Group for Cysteine and OH- Recognition

  • Corresponding author: Hong-Yan LI, hyli@hebut.edu.cn
  • Received Date: 25 January 2022
    Revised Date: 10 July 2022

Figures(8)

  • Two iridium(Ⅲ) complexes, [Ir(L1)2(dbr-bpy)]PF6 (Ir1) and [Ir(L2)2(dbr-bpy)]PF6 (Ir2) with 4, 4'-dibromo-2, 2'-bipyridine (dbr-bpy) as neutral ligand, 6-phenylnicotinaldehyde (L1) and 6-(4-trifluoromethylphenyl)pyridine-3-carbaldehyde (L2) as cyclometalated ligands, were synthesized and characterized by 1H NMR, 13C NMR, IR and MS spectra. For the emission spectra in acetonitrile solution, the maximum peaks were located at 584 and 530 nm for complexes Ir1 and Ir2 with quantum efficiencies of 49% and 66%, respectively. The introduction of electronwithdrawing trifluoromethyl and aldehyde groups resulted in an obvious blue shift in the emission spectra of complexes Ir1 and Ir2. The study of cyclic voltammograms indicates trifluoromethyl moieties in the cyclometalated ligands of complexes Ir1 and Ir2 can reduce the energy of the highest occupied molecular orbital (HOMO), and make the oxidation potential shift towards the anode. Density functional theory (DFT) calculations have been carried out to gain insight into their frontier molecular orbital properties and transition details. Complexes Ir1 and Ir2 displayed significant phosphorescence quenching upon binding to cysteine (Cys), and the binding stoichiometry was approximately 1:2 with the detection limit of 35.1 and 18.5 μmol·L-1, respectively. Both complexes showed a good anti-interference ability for the detection of Cys. Upon the addition of OH- into the solution of Ir2 in DMSO/H2O (7∶3, V/V), OH- replaced the bromine substituents on the neutral ligand of Ir2, resulting in a blue shift of the emission peak. The luminescence color of complex Ir2 changed from yellow to green and Ir2 showed a 4-fold enhanced emission in an alkaline environment when compared to neutral pH. In addition, complex Ir2 exhibited high sensitivity and selectivity for OH- and showed good anti-interference ability.
  • 加载中
    1. [1]

      Chen X Q, Zhou Y, Peng X J, Yoon J. Fluorescent and Colorimetric Probes for Detection of Thiols[J]. Chem. Soc. Rev., 2010,39(6):2120-2135. doi: 10.1039/b925092a

    2. [2]

      Espinosa-Diez C, Miguel V, Vallejo S, Sanchez F J, Sandoval E, Blanco E, Cannata P, Peiro C, Sanchez-Ferrer C F, Lamas S. Role of Glutathione Biosynthesis in Endothelial Dysfunction and Fibrosis[J]. Redox Biol., 2018,14:88-99. doi: 10.1016/j.redox.2017.08.019

    3. [3]

      Paul B D, Sbodio J I, Snyder S H. Cysteine Metabolism in Neuronal Redox Homeostasis[J]. Trends Pharmacol. Sci., 2018,39(5):513-524. doi: 10.1016/j.tips.2018.02.007

    4. [4]

      Kou L F, Jiang X Y, Huang H R, Lin X L, Zhang Y T, Yao Q, Chen R J. The Role of Transporters in Cancer Redox Homeostasis and Cross-Talk with Nanomedicines[J]. Asian J. Pharm. Sci., 2020,15(2):145-157. doi: 10.1016/j.ajps.2020.02.001

    5. [5]

      Hou X F, Li Z S, Li Y Q, Zhou Q H, Liu C H, Fan D, Wang J J, Xu R J, Xu Z H. ICT-Modulated NIR Water-Soluble Fluorescent Probe with Large Stokes Shift for Selective Detection of Cysteine in Living Cells and Zebrafish.Spectroc[J]. Acta Pt. A-Molec. Biomolec. Spectr., 2021,246119030. doi: 10.1016/j.saa.2020.119030

    6. [6]

      Liang B B, Wang B Y, Ma Q J, Xie C X, Li X, Wang S P. A Lysosome-Targetable Turn-On Fluorescent Probe for the Detection of Thiols in Living Cells Based on a 1, 8-Naphthalimide Derivative.Spectroc[J]. Acta Pt. A-Molec. Biomolec. Spectr., 2018,192:67-74. doi: 10.1016/j.saa.2017.10.044

    7. [7]

      Liu Z K, Wang Q Q, Wang H, Su W T, Dong S L. A Chloroacetate Based Ratiometric Fluorescent Probe for Cysteine Detection in Biosystems[J]. Tetrahedron Lett., 2019,60(44)151218. doi: 10.1016/j.tetlet.2019.151218

    8. [8]

      Liu C L, Liu J P, Zhang W Z, Wang Y L, Liu Q, Song B, Yuan J L, Zhang R. "Two Birds with One Stone" Ruthenium(Ⅱ) Complex Probe for Biothiols Discrimination and Detection In Vitro and In Vivo[J]. Adv. Sci., 2020,7(14)2000458. doi: 10.1002/advs.202000458

    9. [9]

      Shahrokhian S. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode[J]. Anal. Chem., 2001,73(24):5972-5978. doi: 10.1021/ac010541m

    10. [10]

      Song P S, Chen X T, Xiang Y, Huang L, Zhou Z J, Wei R R, Tong A J. A Ratiometric Fluorescent Ph Probe Based on Aggregation-Induced Emission Enhancement and Its Application in Live-Cell Imaging[J]. J. Mater. Chem., 2011,21(35):13470-13475. doi: 10.1039/c1jm12098k

    11. [11]

      Khodadoust S, Kouri N C, Talebiyanpoor M S, Deris J, Pebdani A A. Design of an Optically Stable Ph Sensor Based on Immobilization of Giemsa on Triacetylcellulose Membrane[J]. Mater. Sci. Eng. C, 2015,57:304-308. doi: 10.1016/j.msec.2015.07.056

    12. [12]

      Cajaraville M P, Orive E, Villate F, Laza-Martínez A, Uriarte I, Garmendia L, Ortiz-Zarragoitia M, Seoane S, Iriarte A, Marigómez I. Health Status of the Bilbao Estuary: A Review of Data from a Multidisciplinary Approach[J]. Estuar. Coast. Shelf Sci., 2016,179:124-134. doi: 10.1016/j.ecss.2016.01.013

    13. [13]

      Alsudir S, Lai E P C. Selective Detection of ZnO Nanoparticles in Aqueous Suspension by Capillary Electrophoresis Analysis Using Dithiothreitol and L-Cysteine Adsorbates[J]. Talanta, 2017,169:115-122. doi: 10.1016/j.talanta.2017.03.019

    14. [14]

      Hassan S S M, El-Baz A E, Abd-Rabboh H S M. A Novel Potentiometric Biosensor for Selective L-Cysteine Determination Using L-Cysteine-Desulfhydrase Producing Trichosporon Jirovecii Yeast Cells Coupled with Sulfide Electrode[J]. Anal. Chim. Acta, 2007,602(1):108-113. doi: 10.1016/j.aca.2007.09.007

    15. [15]

      Brundu S, Nencioni L, Celestino I, Coluccio P, Palamara A T, Magnani M, Fraternale A. Validation of a Reversed-Phase High Performance Liquid Chromatography Method for the Simultaneous Analysis of Cysteine and Reduced Glutathione in Mouse Organs. Oxidative Med[J]. Cell. Longev., 2016,20161746985.

    16. [16]

      Dogan C E, Cebi N, Develioglu A, Olgun E, Sagdic O. Detection of Cystine and Cysteine in Wheat Flour Using a Robust LC-MS/MS Method[J]. J. Cereal Sci., 2018,84:49-54. doi: 10.1016/j.jcs.2018.09.015

    17. [17]

      Meng Z C, Zhang H F, Zheng J B. An Electrochemical Sensor Based on Titanium Oxide-Carbon Nanotubes Nanocomposite for Simultaneous Determination of Hydroquinone and Catechol[J]. Res. Chem. Intermed., 2015,41(5):3135-3146. doi: 10.1007/s11164-013-1420-9

    18. [18]

      Hesse S J A, Ruijter G J G, Dijkema C, Visser J. Measurement of Intracellular (Compartmental) pH by 31P NMR in Aspergillus Niger[J]. J. Biotechnol., 2000,77(1):5-15. doi: 10.1016/S0168-1656(99)00203-5

    19. [19]

      Maskula S, Nyman J, Ivaska A. Titration of Strong and Weak Acids by Sequential Injection Analysis Technique[J]. Talanta, 2000,52:91-99. doi: 10.1016/S0039-9140(00)00323-4

    20. [20]

      Shi H D, Wang Y, Lin S M, Lou J X, Zhang Q L. Recent Development and Application of Cyclometalated Iridium(Ⅲ) Complexes as Chemical and Biological Probes[J]. RSC Adv., 2015,5(91):74924-74931. doi: 10.1039/C5RA09609J

    21. [21]

      Mei Q B, Shi Y J, Hua Q F, Tong B H. Phosphorescent Chemosensor for Hg2+ Based on an Iridium(Ⅲ) Complex Coordinated with 4-Phenylquinazoline and Carbazole Dithiocarbamate[J]. RSC Adv., 2015,5(91):74924-74931. doi: 10.1039/C5RA09609J

    22. [22]

      Ma X F, Luo X F, Yan Z P, Wu Z G, Zhao Y, Zheng Y X, Zuo J L. Syntheses, Crystal Structures, and Photoluminescence of a Series of Iridium(Ⅲ) Complexes Containing the Pentafluorosulfanyl Group[J]. Organometallics, 2019,38(19):3553-3559. doi: 10.1021/acs.organomet.9b00392

    23. [23]

      Lai P N, Brysacz C H, Alam M K, Ayoub N A, Gray T G, Bao J M, Teets T S. Highly Efficient Red-Emitting Bis-cyclometalated Iridium Complexes[J]. J. Am. Chem. Soc., 2018,140(32):10198-10207. doi: 10.1021/jacs.8b04841

    24. [24]

      Ponram M, Balijapalli U, Sambath B, Iyer S K, Kakaraparthi K, Thota G, Bakthavachalam V, Cingaram R, Sung-Ho J, Sundaramur-thy K N. Inkjet-Printed Phosphorescent Iridium(Ⅲ) Complex Based Paper Sensor for Highly Selective Detection of Hg2+[J]. Dyes Pigment., 2019,163:176-182. doi: 10.1016/j.dyepig.2018.11.054

    25. [25]

      Li Z B, Ge Z R, Tong X, Guo L Y, Huo J L, Li D C, Li H Y, Lu A D, Li T Y. Phosphorescent Iridium(Ⅲ) Complexes Bearing L-Alanine Ligands: Synthesis, Crystal Structures, Photophysical Properties, DFT Calculations, and Use as Chemosensors for Cu2+ Ion[J]. Dyes Pigment., 2021,186109016. doi: 10.1016/j.dyepig.2020.109016

    26. [26]

      Liu S J, Wei L W, Guo S, Jiang J Y, Zhang P L, Han J M, Ma Y, Zhao Q. Anionic Iridium(Ⅲ) Complexes and Their Conjugated Polymer Soft Salts for Time-Resolved Luminescent Detection of Intracel-lular Oxygen Levels[J]. Sens. Actuators B, 2018,262:436-443. doi: 10.1016/j.snb.2018.01.201

    27. [27]

      Zhou Y Y, Xie K, Kong L Y, Chen F, Sun D Y. Highly Selective Electrochemiluminescent Probe to Histidine[J]. J. Electroanal. Chem., 2017,799:122-125. doi: 10.1016/j.jelechem.2017.05.054

    28. [28]

      Li Y Y, Wu Y Q, Wu J, Lun W C, Zeng H, Fan X L. A Near-Infrared Phosphorescent Iridium(Ⅲ) Complex for Fast and Time-Resolved Detection of Cysteine and Homocysteine[J]. Analyst, 2020,145(6):2238-2244. doi: 10.1039/C9AN02469G

    29. [29]

      Alam P, Kaur G, Sarmah A, Roy R K, Choudhury A R, Laskar I R. Highly Selective Detection of H+ and OH- with a Single-Emissive Iridium(Ⅲ) Complex: A Mild Approach to Conversion of Non-AIEE to AIEE Complex[J]. Organometallics, 2015,34(18):4480-4490. doi: 10.1021/acs.organomet.5b00447

    30. [30]

      Yu T Z, Wang Y J, Zhu Z Y, Li Y M, Zhao Y L, Liu X X, Zhang H. Two New Phosphorescent Ir(Ⅲ) Complexes as Efficient Selective Sensors for the Cu2+ Ion[J]. Dyes Pigment., 2019,161:252-260. doi: 10.1016/j.dyepig.2018.09.075

    31. [31]

      Shiu H Y, Wong M K, Che C M. "Turn-On"FRET-Based Luminescent Iridium(Ⅲ) Probes for the Detection of Cysteine and Homocysteine[J]. Chem. Commun., 2011,47(15):4367-4369. doi: 10.1039/c0cc04288a

    32. [32]

      Mao Z F, Wang M D, Liu J B, Liu L J, Lee S M Y, Leung C H, Ma D L. A Long Lifetime Switch-On Iridium(Ⅲ) Chemosensor for the Visualization of Cysteine in Live Zebrafish[J]. Chem. Commun., 2016,52(24):4450-4453. doi: 10.1039/C6CC01008C

    33. [33]

      ZHANG S, XUE L S, WU C, ZHENG Y X, ZUO J L. Synthesis and Electroluminescence of Two Red Iridium Complexes[J]. Chinese J. Inorg. Chem., 2014,30(1):134-141.  

    34. [34]

      Zeng X S, Batsanov A S, Bryce M R. Calix[6]arene Derivatives Selectively Functionalized at Alternate Sites on the Smaller Rim with 2-Phenylpyridine and 2-Fluorenylpyridine Substituents to Provide Deep Cavities[J]. J. Org. Chem., 2006,71(26):9589-9594. doi: 10.1021/jo0614341

    35. [35]

      Wong W Y, Ho C L, Gao Z Q, Mi B X, Chen C H, Cheah K W, Lin Z Y. Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphores[J]. Angew. Chem. Int. Ed., 2006,45(46):7800-7803. doi: 10.1002/anie.200602906

    36. [36]

      PAN M, LI S H, CHENG M L, HU Y Y, SHI P, XU J Y, TONG B H, FENG M Q, ZHANG Q F. Effect of Ancillary Ligand on Photoelectric Properties of Cinnoline Iridium Complexes[J]. Chinese J. Inorg. Chem., 2018,34(4):627-632.  

    37. [37]

      Zanoni K P S, Vilela R R C, Silva I D A, Iha N Y M, Eckert H, De Camargo A S S. Photophysical Properties of Ir(Ⅲ) Complexes Immobi-lized in MCM-41 via Templated Synthesis[J]. Inorg. Chem., 2019,58(8):4962-4971. doi: 10.1021/acs.inorgchem.8b03633

    38. [38]

      Xiao L X, Chen Z J, Qu B, Luo J X, Kong S, Gong Q H, Kido J J. Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices[J]. Adv. Mater., 2011,23(8):926-952. doi: 10.1002/adma.201003128

    39. [39]

      Wu C, Vellaisamy K, Yang G J, Dong Z Z, Leung C H, Liu J B, Ma D L. A Reaction-Based Luminescent Switch-On Sensor for the Detection of OH- Ions in Simulated Wastewater[J]. Dalton Trans., 2017,46(20):6677-6682. doi: 10.1039/C7DT00633K

    40. [40]

      Han D M, Ji X Q, Zhao L H, Pang C Y. Theoretical Insight on Electronic Structure and Photophysical Properties of a Series of Cyclometalated Iridium(Ⅲ) Complexes Bearing the Substituted Phenylpyrazole with Different Electron-Donating or Electron-Accepting Groups[J]. Photochem. Photobiol. Sci., 2021,20(11):1487-1495. doi: 10.1007/s43630-021-00125-8

    41. [41]

      Datta B K, Thiyagarajan D, Samanta S, Ramesh A, Das G. A Novel Chemosensor with Visible Light Excitability for Sensing Zn2+ in Physiological Medium and in HeLa Cells[J]. Org. Biomol. Chem., 2014,12(27):4975-4982. doi: 10.1039/C4OB00653D

    42. [42]

      Ma Y, Liu S J, Yang H R, Wu Y Q, Sun H H, Wang J X, Zhao Q, Li F Y, Huang W. A Water-Soluble Phosphorescent Polymer for Time-Resolved Assay and Bioimaging of Cysteine/Homocysteine[J]. J. Mater. Chem. B, 2013,1(3):319-329. doi: 10.1039/C2TB00259K

    43. [43]

      Wang H, Hu L, Du W, Tian X H, Hu Z J, Zhang Q, Zhou H P, Wu J Y, Uvdal K, Tian Y P. Mitochondria-Targeted Iridium(Ⅲ) Complexes as Two-Photon Fluorogenic Probes of Cysteine/Homocysteine[J]. Sens. Actuators B, 2018,255:408-415. doi: 10.1016/j.snb.2017.08.074

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(15)
  • Abstract views(617)
  • HTML views(175)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return