Citation: Zhou XU, Yu-Xuan LIU, Cheng-Feng XU, Zi-Han HUYAN, Sha LUO, Wei LI, Shou-Xin LIU. B-Doped Hierarchical Porous Carbon Spheres Prepared by Xylose-Soft Template Hydrothermal Strategy for Enhancing Electrochemical Property[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2006-2018. doi: 10.11862/CJIC.2022.192 shu

B-Doped Hierarchical Porous Carbon Spheres Prepared by Xylose-Soft Template Hydrothermal Strategy for Enhancing Electrochemical Property

  • Corresponding author: Shou-Xin LIU, liushouxin@126.com
  • Received Date: 25 March 2022
    Revised Date: 13 July 2022

Figures(9)

  • B-doped hierarchical porous carbon spheres (BPCS) were prepared by hydrothermal and carbonization method using D-xylose as a carbon source, sodium laurate as a soft template, and boric acid as a dopant. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption test, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), Fourier infrared spectroscopy (FT - IR), Raman spectroscopy, X-ray powder diffraction (XRD), and thermogravimetric (TG) analysis indicated that the hierachical porous structure with narrow size (2-5 μm) were compounded by spontaneous self-assembly from hydrogen-bond interaction between the carbon source and the soft template. Moreover, sodium laurate was also used as a pore - forming agent (mesopore). Boric acid was doped on the carbon spheres in the form of BC3, BCO2, and BC2O and improved the surface wettability. After CO2 activation, decomposition of sodium laurate and the accumulation of colloidal carbon spheres, micropore (0.5 - 1.2 nm), mesopore (3.14 - 35.00 nm), and macropore (60 - 146 nm) were produced respectively. Electrochemical test results showed that the porous carbon spheres (BPCS - 1) treated with 0.927 5 g boric acid had the optimal supercapacitor performance. In a three-electrode system, BPCS-1 showed a high specific capacitance of 287.12 F·g-1 at a current density of 0.5 A·g-1. In a two-electrode system, BPCS-1 showed an excellent energy density (5.3 Wh·kg-1) and a superior specific capacitance of 151.34 F·g-1 at a current density of 0.5 A·g-1, and outstanding cycling stability of 96.43% capacitance retention after 1 000 cycles at a current density of 5 A·g-1.
  • 加载中
    1. [1]

      XIN R R, MIAO H J, JIANG W, HU G S. N-Doped Porous Carbons with High Surface Areas Prepared through One-Step Chemical Activation and Their Application for Supercapacitors[J]. Chinese J. Inorg. Chem., 2019,35(10):1781-1790. doi: 10.11862/CJIC.2019.222

    2. [2]

      Wang Z H, Tammela P, Strømme M, Nyholm L. Cellulose-Based Supercapacitors: Material and Performance Considerations[J]. Adv.Energy Mater., 2017,7(18)1700130. doi: 10.1002/aenm.201700130

    3. [3]

      Xue M Z, Xu H, Tan Y, Chen C, Li B, Zhang C M. A Novel Hierarchical Porous Carbon Derived from Durian Shell as Enhanced Sulfur Carrier for High Performance Li-S Batteries[J]. J. Electroanal. Chem., 2021,893115306. doi: 10.1016/j.jelechem.2021.115306

    4. [4]

      Qiao Y L, Zhang R, Li R M, Fang W, Cui Z X, Zhang D. Green Synthesis of Hierarchical Porous Carbon with Adjustable Porosity for High Performance Supercapacitors[J]. Diam. Relat. Mater., 2021,117108488. doi: 10.1016/j.diamond.2021.108488

    5. [5]

      Lu S Y, Huang X L, Tang M H, Peng Y Q, Wang S C, Makwarimba C P. Synthesis of N-Doped Hierarchical Porous Carbon with Excellent Toluene Adsorption Properties and Its Activation Mechanism[J]. Environ. Pollut., 2021,284117113. doi: 10.1016/j.envpol.2021.117113

    6. [6]

      LIU F F, CHUAN X Y, YANG Y, LI A J. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes[J]. J. Inorg. Mater., 2021,36(7):711-720.  

    7. [7]

      Zhang J T, Qu L T, Shi G Q, Liu J Y, Chen j F, Dai L M. N, P-Codoped Carbon Networks as Efficient Metal-Free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions[J]. Angew. Chem. Int. Ed., 2016,55(6):2230-2234. doi: 10.1002/anie.201510495

    8. [8]

      Lin Z T, Ren X Y, Liu J B, Sui Y, Qin C L, Jiang X K. B-Doped Carbon Powder Synthesized from PU/PF/GO Composite as Electrode Material for Supercapacitors[J]. JOM, 2021,73(3):834-846. doi: 10.1007/s11837-020-04554-1

    9. [9]

      Lv S, Ma L Y, Shen X Y, Tong H. Recent Design and Control of Carbon Materials for Supercapacitors[J]. J. Mater. Sci., 2021,56(3):1919-1942. doi: 10.1007/s10853-020-05351-6

    10. [10]

      Sadjadi S, Malmir M, Lazzara G, Cavallaro G, Heravi M M. Preparation of Palladated Porous Nitrogen-Doped Carbon Using Halloysite as Porogen: Disclosing Its Utility as a Hydrogenation Catalyst[J]. Sci. Rep., 2020,10(1)2039. doi: 10.1038/s41598-020-59003-5

    11. [11]

      Zhou A, Qiao L Y, Wei G N, Jiang Z T, Zhao Y H. Self-Assembly of Dimer Motors under Confined Conditions[J]. Chin. Phys. Lett., 2020,37(5)050501. doi: 10.1088/0256-307X/37/5/050501

    12. [12]

      Li W Z, Li B Y, Shen M, Gao Q, Hou J H. Use of Gemini Surfactant as Emulsion Interface Microreactor for the Synthesis of Nitrogen-Doped Hollow Carbon Spheres for High-Performance Supercapacitors[J]. Chem. Eng. J., 2020,384123309. doi: 10.1016/j.cej.2019.123309

    13. [13]

      Enterría M, Pereira M F R, Martins J I, Figueiredo J L. Hydrothermal Functionalization of Ordered Mesoporous Carbons: The Effect of Boron on Supercapacitor Performance[J]. Carbon, 2015,95:72-83. doi: 10.1016/j.carbon.2015.08.009

    14. [14]

      He H L, Wang Y S, Yu Z C, Liu J R, Zhao Y H, Ke Y S. Ecofriendly Flame-Retardant Composite Aerogel Derived from Polysaccharide: Preparation, Flammability, Thermal Kinetics, and Mechanism[J]. Carbohydr. Polym., 2021,269118291. doi: 10.1016/j.carbpol.2021.118291

    15. [15]

      Li Y J, Shi Q, Luo Y, Chu G W, Zou H K, Zhang L L, Sun B C. Hydrothermal Controllable Synthesis of Hollow Carbon Particles: Reaction-Growth Mechanism[J]. Chem. Eng. Sci., 2020,225115787. doi: 10.1016/j.ces.2020.115787

    16. [16]

      Liu J, Zhao Y J, Xu L L, Wang X F, Tian Y. Dual Soft-Templated Congenerous Assembly to Raspberry-Shaped Mesoporous Carbon Nanoparticles with Hierarchical Mesopores[J]. Micropor. Mesopor. Mat., 2020,293109803. doi: 10.1016/j.micromeso.2019.109803

    17. [17]

      Yin J, Zhang W L, Alhebshi N, Salah N, Alshareef H N. Synthesis Strategies of Porous Carbon for Supercapacitor Applications[J]. Small Methods, 2020,4(3)1900853. doi: 10.1002/smtd.201900853

    18. [18]

      Ch L T L, Chejne F K, Bhatia S. Effect of Activating Agents: Flue Gas and CO2 on the Preparation of Activated Carbon for Methane Storage[J]. Energy Fuel, 2015,29(10):6296-6305. doi: 10.1021/acs.energyfuels.5b01438

    19. [19]

      Sun J M, Huang J E L, Ma C H, Wu Z W, Xu Z, Luo S, Li W, Liu S X. Wood-Inspired Compressible, Mesoporous, and Multifunctional Carbon Aerogel by a Dual-activation Strategy from Cellulose[J]. ACS Sustain. Chem. Eng., 2020,8(30):11114-11122. doi: 10.1021/acssuschemeng.0c01393

    20. [20]

      Huang Z C, Zheng G F, Liu Z. Self-Template Synthesis of Multiheteroatom Codoped Porous Carbon with Rational Mesoporosity from Traditional Chinese Medicine Dregs for High-Performance Supercapacitors[J]. ACS Sustain. Chem. Eng., 2020,8(31):11667-11681. doi: 10.1021/acssuschemeng.0c03185

    21. [21]

      Wu M, Xu S, Li X, Zhang T K, Lv Z Z, Li Z G, Li X L. Pore Regulation of Wood-Derived Hierarchical Porous Carbon for Improving Electrochemical Performance[J]. J. Energy Storage, 2021,40102663. doi: 10.1016/j.est.2021.102663

    22. [22]

      HU Q T, ZHANG W D, LI T, YAN X D, GU Z G. Preparation and Application in Supercapacitors of Shiitake Biomass-Based Nitrogen-Doped Microporous Carbon[J]. Chinese J. Inorg. Chem., 2020,36(8):1573-1581. doi: 10.11862/CJIC.2020.114

    23. [23]

      Yu T T, Wang F M, Zhang X B, Lv G J, Lv H H, Wang J W, Zhai Y, Li M Z. Typha Orientalis Leaves Derived P-Doped Hierarchical Porous Carbon Electrode and Carbon/MnO2 Composite Electrode for High-Performance Asymmetric Supercapacitor[J]. Diam. Relat. Mat., 2021,116108450. doi: 10.1016/j.diamond.2021.108450

    24. [24]

      Liu L T, Sun X Y, Dong Y, Wang D K, Wang Z, Jiang Z J, Li A, Chen X H, Song H H. N-Doped Hierarchical Porous Hollow Carbon Spheres with Multi-cavities for High Performance Na-Ion Storage[J]. J. Power Sources, 2021,506230170. doi: 10.1016/j.jpowsour.2021.230170

    25. [25]

      Wang Y B, Shang B, Liu M, Shi F, Peng B, Deng Z W. Hollow Polydopamine Colloidal Composite Particles: Structure Tuning, Functionalization and Applications[J]. J. Colloid Interface Sci., 2018,513:43-52. doi: 10.1016/j.jcis.2017.10.102

    26. [26]

      Zeng S B, Arumugam G M, Liu X H, Yang Y Z, Li X, Zhong H, Guo F, Mai Y H. Encapsulation of Sulfur into N-Doped Porous Carbon Cages by a Facile, Template-Free Method for Stable Lithium-Sulfur Cathode[J]. Small, 2020,16(39)2001027. doi: 10.1002/smll.202001027

    27. [27]

      Ge R Y, Huo J J, Liao T, Liu Y, Zhu M Y, Li Y, Zhang J J, Li W X. Hierarchical Molybdenum Phosphide Coupled with Carbon as a Whole pH-Range Electrocatalyst for Hydrogen Evolution Reaction[J]. Appl. Catal. B-Environ., 2020,260118196. doi: 10.1016/j.apcatb.2019.118196

    28. [28]

      Wang H, Yan T T, Shen J J, Zhang J P, Shi L Y, Zhang D S. Efficient Removal of Metal Ions by Capacitive Deionization with Straw Waste Derived Graphitic Porous Carbon Nanosheets[J]. Environ. Sci. -Nano, 2019,7(1):317-326.

    29. [29]

      Yan J J, Miao L, Duan H, Zhu D Z, Lv Y K, Xiong W, Li L C, Gan L H, Liu M X. Core-Shell Hierarchical Porous Carbon Spheres with N/O Doping for Efficient Energy Storage[J]. Electrochim. Acta, 2020,358136899. doi: 10.1016/j.electacta.2020.136899

    30. [30]

      Li Z, Zhang Y, Feng Y, Cheng C Q, Qiu K W, Dong C K, Liu H, Du X W. Co3O4 Nanoparticles with Ultrasmall Size and Abundant Oxygen Vacancies for Boosting Oxygen Involved Reactions[J]. Adv. Funct. Mater., 2019,29(36)1903444. doi: 10.1002/adfm.201903444

    31. [31]

      Fu S, Yuan W, Liu X M, Yan Y H, Liu H P, Li L, Zhao F Y, Zhou J G. A Novel 0D/2D WS2/BiOBr Heterostructure with Rich Oxygen Vacancies for Enhanced Broad-Spectrum Photocatalytic Performance[J]. J. Colloid Interface Sci., 2020,569:150-163. doi: 10.1016/j.jcis.2020.02.077

    32. [32]

      Li S T, Chen L, Liu Z T, Zhang M M, Li B S, Lai C. Grafting Fe(Ⅲ) Species on Oxygen-Vacancy Abundant BiOIO3 with Promoted Interfacial Charge Transfer for Photocatalytic Ciprofloxacin Degradation[J]. Appl. Surf. Sci., 2021,566150658. doi: 10.1016/j.apsusc.2021.150658

    33. [33]

      DAI W W, ZHANG Y, LIU Y J, FANG J. Preparation of Boron-Modified Ordered Mesoporous Carbon with High Specific Surface Area[J]. Carbon Techniques, 2016,35(4):26-30.  

    34. [34]

      Qiu W L, Leisen J E, Liu Z Y, Quan W Y, Koros W J. Key Features of Polyimide-Derived Carbon Molecular Sieves[J]. Angew. Chem. Int. Ed., 2021,60:22322-22331. doi: 10.1002/anie.202106740

    35. [35]

      CHEN X R, HUANG B, JIANG M S. Study on the Charring Process of Chinese Fir Thinning Wood under Different Conditions by Comparisons of FTIR[J]. Chemical Industry and Engineering Progress, 2008,27(3):429-435. doi: 10.3321/j.issn:1000-6613.2008.03.022

    36. [36]

      Ma L N, Bi Z J, Zhang W, Zhang Z H, Xiao Y, Niu H J, Huang Y D. Synthesis of a Three-Dimensional Interconnected Oxygen -, Boron -, Nitrogen -, and Phosphorus Tetratomic-Doped Porous Carbon Network as Electrode Material for the Construction of a Superior Flexible Supercapacitor[J]. ACS Appl. Mater. Interfaces, 2020,12(41):46170-46180. doi: 10.1021/acsami.0c13454

    37. [37]

      Du J, Zhang Y, Lv H J, Chen A B. N/B-Co-doped Ordered Mesoporous Carbon Spheres by Ionothermal Strategy for Enhancing Supercapacitor Performance[J]. J. Colloid Interface Sci., 2021,587:780-788. doi: 10.1016/j.jcis.2020.11.037

    38. [38]

      Zhang Y, Qi F S, Liu Y J. Fabrication of High B-Doped Ordered Mesoporous Carbon with 4-Hydroxyphenylborate Phenolic Resin for Supercapacitor Electrode Materials[J]. RSC Adv., 2020,10(19):11210-11218. doi: 10.1039/D0RA00561D

    39. [39]

      Han L, Chen X, Zeng S J, Liu J, Yang Z L, Wang Z Q, Li L, Wang H B, Hou Z B, Xu M. B, N Dual Doped Coral-like Carbon Framework with Superior Pseudocapacitance and Surface Wettability[J]. Front. Mater., 2021,8705930. doi: 10.3389/fmats.2021.705930

    40. [40]

      Li Y T, Liu L, Wu Y Z, Wu T, Wu H Y, Cai Q P, Xu Y T, Zeng B R, Yuan C H, Dai L Z. Facile Synthesis of Nitrogen-Doped Carbon Materials with Hierarchical Porous Structures for High-Performance Supercapacitors in Both Acid and Alkaline Electrolytes[J]. J. Mater. Chem. A, 2019,7(21):13154-13163. doi: 10.1039/C9TA00890J

    41. [41]

      Li Q, Liu Y P, Yang L W, Wang Y, Liu Y H, Chen Y X, Guo X D, Wu Z G, Zhong B H. N, O Co-doped Chlorella-Based Biomass Carbon Modified Separator for Lithium-Sulfur Battery with High Capacity and Long Cycle Performance[J]. J. Colloid Interface Sci., 2021,585:43-50. doi: 10.1016/j.jcis.2020.11.084

    42. [42]

      GAO S M, ZHENG S J, JIANG W, HU G S. Porous Carbon Material: Post-Treatment through Chemical Vapor Method and Supercapacitor Performance[J]. Chinese J. Inorg. Chem., 2022,38(3):479-488.  

    43. [43]

      Wang H Y, Xu C M, Chen Y Q, Wang Y. MnO2 Nanograsses on Porous Carbon Cloth for Flexible Solid-State Asymmetric Supercapacitors with High Energy Density[J]. Energy Storage Mater., 2017,8:127-133. doi: 10.1016/j.ensm.2017.05.007

    44. [44]

      Zhao Z Y, Xiao Z Y, Xi Y R, Wang G X, Zhang Y C, Li J J, Wei L. B, N-Codoped Porous C with Controllable N Species as an Electrode Material for Supercapacitors[J]. Inorg. Chem., 2021,60(17):13252-13261.

    45. [45]

      Kwon H N, Park G D, Kang Y C, Roh K C. Fabrication of Bimodal Micro-Mesoporous Amorphous Carbongraphitic Carbon-Reduced Graphene Oxide Composite Microspheres Prepared by Pilot-Scale Spray Drying and Their Application Insupercapacitors[J]. Carbon, 2019,144:591-600. doi: 10.1016/j.carbon.2018.12.111

    46. [46]

      Geng Q H, Huang G X, Liu Y B, Li Y Y, Liu L H, Yang X H, Wang Q, Zhang C X. Facile Synthesis of B/N Co-doped 2D Porous Carbon Nanosheets Derived from Ammonium Humate for Supercapacitor Electrodes[J]. Electrochim. Acta, 2019,298:1-13. doi: 10.1016/j.electacta.2018.12.038

    47. [47]

      WU Z Y, FAN L, TAO Y R, WANG W, WU X C, ZHAO J W. Pomelo Peel Derived Hierarchical Porous Carbon as Electrode Materials for High-Performance Supercapacitor[J]. Chinese J. Inorg. Chem., 2018,34(7):1249-1260. doi: 10.11862/CJIC.2018.166

    48. [48]

      Yang P H, Mai W J. Flexible Solid-State Electrochemical Supercapacitors[J]. Nano Energy, 2014,8:274-290. doi: 10.1016/j.nanoen.2014.05.022

    49. [49]

      Jin J T, Qiao X C, Zhou F, Wu Z S, Cui L F, Fan H B. Interconnected Phosphorus and Nitrogen Codoped Porous Exfoliated Carbon Nanosheets for High-Rate Supercapacitors[J]. ACS Appl. Mater. Interfaces, 2017,9(20):17317-17325. doi: 10.1021/acsami.7b00617

    50. [50]

      Sun L, Fu Q, Pan C X. Mn3O4 embedded 3D Multi-heteroatom Codoped Carbon Sheets/Carbon foams Composites for High-Performance Flexible Supercapacitors[J]. J. Alloy. Compd., 2020,849156666. doi: 10.1016/j.jallcom.2020.156666

    51. [51]

      Huang G G, Wang Y, Zhang T Y, Wu X X, Cai J J. High-Performance Hierarchical N-Doped Porous Carbons from Hydrothermally Carbonized Bamboo Shoot Shells for Symmetric Supercapacitors[J]. J. Taiwan Inst. Chem. E, 2019,96:672-680. doi: 10.1016/j.jtice.2018.12.024

    52. [52]

      Yi J L, Yu X H, Zhang R L, Liu L. Chitosan-Based Synthesis of O, N, and P Codoped Hierarchical Porous Carbon as Electrode Materials for Supercapacitors[J]. Energy Fuel, 2021,35:20339-20348. doi: 10.1021/acs.energyfuels.1c03164

    53. [53]

      Li X, Lv Z Z, Wu M, Li X L, Li Z G. N, P Co-Doped Porous Carbon from Cross-Linking Cyclophosphazene for High-Performance Supercapacitors[J]. J. Electroanal. Chem., 2021,881114952. doi: 10.1016/j.jelechem.2020.114952

    54. [54]

      Zhang H F, Wei F, Sun J, Jing M Y, He X J. Ionic Liquid Assisted Synthesis of Porous Carbons from Rice Husk for Supercapacitors[J]. J. Electrochem., 2019,25(6):764-772.

    55. [55]

      Le T H, Ngo V H, Nguyen M T, Nguyen V C, Vu D N, Pham T D, Tran D T. Enhanced Electrochemical Performance of Porous Carbon Derived from Cornstalks for Supercapacitor Applications[J]. J. Electron. Mater., 2021,50:6854-6861. doi: 10.1007/s11664-021-09249-0

    56. [56]

      Wang Y W, Hao L N, Zeng Y, Cao X H, Huang H N, Liu J H, Chen X D, Wei S H, Gan L H, Yang P H, Liu M X, Zhu D Z. Three-Dimensional Hierarchical Porous Carbon Derived from Resorcinol Formaldehyde-Zinc Tatrate/Poly(styrene-maleic anhydride) for High Performance Supercapacitor Electrode[J]. J. Alloy. Compd., 2021,886161176.

    57. [57]

      Pang X N, Cao M, Qin J H, Li X J, Yang X. Synthesis of Bamboo-Derived Porous Carbon: Exploring Structure Change, Pore Formation and Supercapacitor Application[J]. J. Porous Mat., 2022,29:559-569.

    58. [58]

      Arias A N, Villarroel-Rocha J, Sapag K, Mori M F, Planes G A, Flexer V, Tesio A Y. One-Pot Synthesis of Hierarchical Porous Carbons with Extended Ultramicropores: New Prospective Materials for Supercapacitors[J]. Carbon Trends, 2021,5100110.

    59. [59]

      Díez N, Sevilla M, Fombona-Pascual A, Fuertes A B. Monodisperse Porous Carbon Nanospheres with Ultra-High Surface Area for Energy Storage in Electrochemical Capacitors[J]. Batteries Supercaps, 2022,5e202100169.

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(7)
  • Abstract views(559)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return