Citation: Shi-Fang JIA, Xiu-Li HAO, Yan-Zhen WEN, Yan ZHANG. Synthesis, Characterization, and Antitumor Activity of Ruthenium(Ⅱ) Complexes Based on Schiff Base Ligand[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1919-1926. doi: 10.11862/CJIC.2022.191 shu

Synthesis, Characterization, and Antitumor Activity of Ruthenium(Ⅱ) Complexes Based on Schiff Base Ligand

  • Corresponding author: Yan ZHANG, yanzhang872010@163.com
  • Received Date: 25 November 2021
    Revised Date: 6 June 2022

Figures(7)

  • A series of new Schiff base ligands (BLn, n=1 - 3) and complexes have been synthesized. Binuclear ruthenium complexes [Ru(BLn)(bpy)2]2(ClO4)4, where bpy=2, 2'-bipyridine, BLn=((PyCHN)-Ph-O-C6H4) 2R (PyCHN=N-2-pyridylmethylene, R=none for Ru1, —C(CH3)2 for Ru2 and —SO2 for Ru3), have been prepared and characterized by element analysis, 1H NMR, IR, and mass spectrometry methods. The cytotoxicity to cervical cancer cells (Hela), gastric cancer cells (BGC823), gastric cancer cells (SGC-7901), and human normal embryonic lung fibroblasts cells (MRC-5) of the three complexes in vitro was evaluated using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. It is worth noting that Ru1-Ru3 showed excellent antitumor effects in a cellular study for BGC823 in vitro. However, Ru3 exhibited the highest cytotoxicity to any cancer cells than Ru1 and Ru2.
  • 加载中
    1. [1]

      Rosenberg B, Vancamp L. Platinum Compounds: A New Class of Potent Antitumour Agents[J]. Nature, 1969,222:385-386. doi: 10.1038/222385a0

    2. [2]

      Esref Alkis M, Kelestemür Ü, Alan Y, Turan N, Buldurun K. Cobalt and Ruthenium Complexes with Pyrimidine Based Schiff Base: Synthesis, Characterization, Anticancer Activities and Electrochemotherapy Efficiency[J]. J. Mol. Struct., 2021,1226129402. doi: 10.1016/j.molstruc.2020.129402

    3. [3]

      Jiang G B, Zhang W Y, He M, Gu Y Y, Bai L, Wang Y J, Qiao Y, Du F. Anticancer Activity of Two Ruthenium (Ⅱ) Polypyridyl Complexes toward Hepatocellular Carcinoma HepG - 2 Cells[J]. Polyhedron, 2019,169:209-218. doi: 10.1016/j.poly.2019.05.017

    4. [4]

      Małecka M, Skoczynska A, Goodman D M, Hartinger C G, Budzisz E. Biological Properties of Ruthenium (Ⅱ)/(Ⅲ) Complexes with Flavonoids as Ligands[J]. Coord. Chem. Rev., 2021,436213849. doi: 10.1016/j.ccr.2021.213849

    5. [5]

      Jiang G B, Zhang W Y, He M, Gu Y Y, Bai L, Wang Y J, Yi Q Y, Du F. Systematic Evaluation of the Antitumor Activity of Three Ruthenium Polypyridyl Complexes[J]. J. Inorg. Biochem., 2021,225111616. doi: 10.1016/j.jinorgbio.2021.111616

    6. [6]

      Savić A, Gligorijević N, Aranđelović S. Antitumor Activity of Organoruthenium Complexes with Chelate Aromatic Ligands, Derived from 1, 10 - Phenantroline: Synthesis and Biological Activity[J]. J. Inorg. Biochem., 2020,202110869. doi: 10.1016/j.jinorgbio.2019.110869

    7. [7]

      Jana D, Zhao Y L. Strategies for Enhancing Cancer Chemodynamic Therapy Performance[J]. Exploration, 2022(2)20210238.

    8. [8]

      Hartinger C G, Jakupeca M A, Zorbas S, Groessl M, Egger A, Berger W, Zorbas H, Dyson P J, Keppler B K. KP1019, A New Redox-Active Anticancer Agent-Preclinical Development and Results of a Clinical Phase Ⅰ Study in Tumor Patients[J]. Chem. Biodivers., 2008,5(10):2140-2155. doi: 10.1002/cbdv.200890195

    9. [9]

      Leigen S, Burgers S A, Baas P, Pluim D, Tibben M, Werkhoven E, Alessio E, Sava G, Beijnen J H, Schellens J H M. Phase Ⅰ/Ⅱ Study with Ruthenium Compound NAMI - A and Gemcitabine in Patients with Non - small Cell Lung Cancer after First Line Therapy[J]. Invest. New Drugs, 2015,33(1):201-214. doi: 10.1007/s10637-014-0179-1

    10. [10]

      Schatzschneider U, Niesel J, Ott I, Gust R, Alborzinia H, Wölfl S. Cellular Uptake, Cytotoxicity, and Metabolic Profiling of Human Cancer Cells Treated with Ruthenium (Ⅱ) Polypyridyl Complexes[J]. ChemMedChem, 2008,3(7):1104-1109. doi: 10.1002/cmdc.200800039

    11. [11]

      Lentz F, Drescher A, Lindauer A, Henke M, Hilger R A, Hartinger C G, Scheulen M E, Dittrich C, Keppler B K, Jaehde U. Pharmacokinetics of a Novel Anticancer Ruthenium Complex (KP1019, FFC14A) in a Phase Ⅰ Dose-Escalation Study[J]. Anti-Cancer Drugs, 2009,20(2):97-103. doi: 10.1097/CAD.0b013e328322fbc5

    12. [12]

      Zhong Y W, Wu S H, Burkhardt S E, Yao C J, Abruña H D. Mononuclear and Dinuclear Ruthenium Complexes of 2, 3-Di-2-pyridyl-5, 6-diphenylpyrazine: Synthesis and Spectroscopic and Electrochemical Studies[J]. Inorg. Chem., 2011,50(2):517-524. doi: 10.1021/ic101629w

    13. [13]

      Huang W K, Cheng C W, Chang S M, Lee Y P, Eric W G. Synthesis and Electron - Transfer Properties of Benzimidazole - Functionalized Ruthenium Complexes for Highly Efficient Dye - Sensitized Solar Cells[J]. Chem. Commun., 2010,46(47):8992-8994. doi: 10.1039/c0cc03517c

    14. [14]

      Garza-Ortiz A, Maheswari P U, Lutz M, Siegler M A, Reedijk J. Tuning the Cytotoxic Properties of New Ruthenium(Ⅲ) and Ruthenium(Ⅱ) Complexes with a Modified Bis(arylimino)pyridine Schiff Base Ligand Using Bidentate Pyridine - Based Ligands[J]. J. Biol. Inorg. Chem., 2014,19:675-689. doi: 10.1007/s00775-013-1083-4

    15. [15]

      Selvamurugan S, Viswanathamurthi P, Endo A, Hashimoto T, Natarajan K. Synthesis, Spectral Characterization, Antioxidant, Anticancer In Vitro, and DNA Cleavage Studies of a Series of Ruthenium (Ⅱ) Complexes Bearing Schiff Base Ligands[J]. J. Coord. Chem., 2013,66(22):4052-4066. doi: 10.1080/00958972.2013.858135

    16. [16]

      Sathiyaraj S, Sampath K, Butcher R J. Designing, Structural Elucidation, Comparison of DNA Binding, Cleavage, Radical Scavenging Activity and Anticancer Activity of Copper (Ⅰ) Complex with 5-Dimethyl-2-phenyl-4-[(pyridin-2-ylmethylene)-amino]-1, 2-dihydropyrazol-3-one Schiff Base Ligand[J]. Eur. J. Med. Chem., 2013,64:81-89. doi: 10.1016/j.ejmech.2013.03.047

    17. [17]

      Garza-Ortiz A, Maheswari P U, Siegler M, Spek A L, Reedijk J. A New Family of Ru (Ⅱ) Complexes with a Tridentate Pyridine Schiff-Base Ligand and Bidentate Co-ligands: Synthesis, Characterization, Structure and In Vitro Cytotoxicity Studies[J]. New J. Chem., 2013,37:3450-3460. doi: 10.1039/c3nj00415e

    18. [18]

      Sathiyaraj S, Butcher R J, Jayabalakrishnan C. Synthesis, Characterization, DNA Interaction and In Vitro Cytotoxicity Activities of Ruthenium(Ⅱ) Schiff Base Complexes[J]. J. Mol. Struct., 2012,1030:95-103. doi: 10.1016/j.molstruc.2012.07.021

    19. [19]

      Raja G, Butcher R J, Jayabalakrishnan C. Studies on Synthesis, Characterization, DNA Interaction and Cytotoxicity of Ruthenium(Ⅱ) Schiff Base Complexes[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2012,94:210-215. doi: 10.1016/j.saa.2012.03.035

    20. [20]

      Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays[J]. J. Immunol. Methods, 1983,65(1/2):55-63.

    21. [21]

      BAI X F, MA X, XIE X X, SHAO M S, GUO N N, YAN N, YAO L. Synthesis and Anti-tumor Activity of Tubulysins Analogues[J]. Chem. J. Chinese Universities, 2017,38(1):47-55.  

    22. [22]

      Zhang Y, Cai P, Hu P C, Yang F, Cheng G Z. Synthesis, Characterization, Crystal Structure, Cytotoxicity, Apoptosis and Cell Cycle Arrest of Ruthenium (Ⅱ) Complex[Ru(bpy)2(adpa)] (PF6)2 (bpy=2, 2'-Bipyridine, adpa=4-(4-Aminophenyl) diazenyl-N-(pyridin-2-ylmethylene)aniline)[J]. RSC Adv., 2015,5:11591-11598. doi: 10.1039/C4RA12715C

    23. [23]

      Mendoza-Ferri M G, Hartinger C G, Mendoza M A, Groessl M, Egger A E, Eichinger R E, Mangrum J B, Farrell N P, Maruszak M, Bednarski P J, Klein F, Jakupec M A, Nazarov A A, Severin K, Keppler B K. Transferring the Concept of Multinuclearity to Ruthenium Complexes for Improvement of Anticancer Activity[J]. J. Med. Chem., 2009,52:916-925. doi: 10.1021/jm8013234

    24. [24]

      Giannini F, Paul L E H, Furrer J, Therrien B, Süss-Fink G. Highly Cytotoxic Diruthenium Trithiolato Complexes of the Type[(η6-p-MeC6H4Pri)2Ru2(μ2 - SR)3]+ : Synthesis, Characterization, Molecular Structure and In Vitro Anticancer Activity[J]. New J. Chem., 2013,37:3503-3511. doi: 10.1039/c3nj00476g

    25. [25]

      Mulyana Y, Weber D K, Buck D P, Motti C A, Collinsb J G, Keene F R. Oligonuclear Polypyridylruthenium (Ⅱ) Complexes Incorporating Flexible Polar and Non-polar Bridges: Synthesis, DNA-Binding and Cytotoxicity[J]. Dalton Trans., 2011,40:1510-1523. doi: 10.1039/c0dt01250e

    26. [26]

      Gorle A K, Ammit A J, Wallace L, Keene F R, Collins J G. Multinuclear Ruthenium(Ⅱ) Complexes as Anticancer Agents[J]. New J. Chem., 2014,38:4049-4059. doi: 10.1039/C4NJ00545G

    27. [27]

      DeBerardinis R J, Lum J J, Hatzivassiliou G, Thompson C B. The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation[J]. Cell Metab., 2008,7(1):11-20. doi: 10.1016/j.cmet.2007.10.002

    28. [28]

      Liu H Y, Yuan Y Z, Guo H Y, Mitchelson K, Zhang K, Xie L, Qin W Y, Lu Y, Wang J, Guo Y, Zhou Y X, He F C. Hepatitis B Virus Encoded X Protein Suppresses Apoptosis by Inhibition of the Caspase-Independent Pathway[J]. J. Proteome Res., 2012,11(10):4803-4813. doi: 10.1021/pr2012297

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    15. [15]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(6)
  • Abstract views(531)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return