Citation: Fu-Shao LI, Ying-Xian XU, Qing-Qing WU, Hu-Jun SHEN, Ming-Sen DENG. Anode Material Sr2MgMoO6: Preparation and Catalytic Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2028-2036. doi: 10.11862/CJIC.2022.187 shu

Anode Material Sr2MgMoO6: Preparation and Catalytic Performance

Figures(8)

  • Double-perovskite oxide Sr2MgMoO6 (SMMO) was prepared as anode material for solid-oxide fuel cells by the sol-gel route. The effect of the material preparation scenario on the phase constituents, transport property, and catalyzing activity for H2 oxidization was investigated. The results show that the preparation process of SMMO requires strict control, and a phase-pure sample with a double-perovskite structure can be hardly synthesized by a one-step annealing reaction, and a high purity grade of SMMO requires the repeated thorough mixing and full annealing. In the meanwhile, impurity phase SrMoO4 in a very small amount is almost unavoidable. The impure substance in samples affects a great deal of the electrical conductivity of this material, and a purer sample exhibits better conductive performance. The purity of SMMO has a tremendous impact on the electrochemical performance of this material, and a purer sample exhibits a lower anode interfacial resistance, a higher catalyzing activity for H2 oxidizing, and a larger power output of the corresponding single cell. At a temperature of 800 ℃, the area-specific resistance of the SMMO anode was as low as 1.07 Ω·cm2, and power output from the corresponding single cell reached to 710 mW·cm-2.
  • 加载中
    1. [1]

      Steele B C H, Heinzel A. Materials for Fuel-Cell Technologies[J]. Nature, 2001,414:345-352. doi: 10.1038/35104620

    2. [2]

      Haile S M. Fuel Cell Materials and Components[J]. Acta Mater., 2003,51:5981-6000. doi: 10.1016/j.actamat.2003.08.004

    3. [3]

      Wachsman E D, Lee K T. Lowering the Temperature of Solid Oxide Fuel Cells[J]. Science, 2011,334:935-939. doi: 10.1126/science.1204090

    4. [4]

      Marinha D, Dessemond L, Djurado E. Comprehensive Review of Current Developments in IT-SOFCs[J]. Curr. Inorg. Chem., 2013,3:2-22. doi: 10.2174/1877944111303010003

    5. [5]

      Gao Z, Mogni L V, Miller E C, Railsback J G, Barnett S A. A Perspective on Low-Temperature Solid Oxide Fuel Cells[J]. Energy Environ. Sci., 2016,9:1602-1644. doi: 10.1039/C5EE03858H

    6. [6]

      Zhang Y, Knibbe R, Sunarso J, Zhong Y J, Zhou W, Shao Z P, Zhu Z H. Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating below 500 ℃[J]. Adv. Mater., 2017,291700132. doi: 10.1002/adma.201700132

    7. [7]

      Shao Z, Haile S M. A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells[J]. Nature, 2004,431:170-173. doi: 10.1038/nature02863

    8. [8]

      Mahato N, Banerjee A, Gupta A, Omar S, Balani K. Progress in Material Selection for Solid Oxide Fuel Cell Technology: A Review[J]. Prog. Mater. Sci., 2015,72:141-337. doi: 10.1016/j.pmatsci.2015.01.001

    9. [9]

      Zhang Z B, Zhu Y L, Zhong Y J, Zhou W, Shao Z P. Anion Doping: A New Strategy for Developing High-Performance Perovskite-Type Cathode Materials of Solid Oxide Fuel Cells[J]. Adv. Energy Mater., 2017,71700242. doi: 10.1002/aenm.201700242

    10. [10]

      Ji Q Q, Bi L, Zhang J T, Cao H J, Zhao X S. The Role of Oxygen Vacancies of ABO3 Perovskite Oxides in the Oxygen Reduction Reaction[J]. Energy Environ. Sci., 2020,13:1408-1428. doi: 10.1039/D0EE00092B

    11. [11]

      Zhu X D, Sun K N, Zhang N Q, Chen X B, Wu L J, Jia D C. Improved Electrochemical Performance of SrCo0.8Fe0.2O3-δ-La0.45Ce0.55O2-δ Composite Cathodes for IT-SOFC[J]. Electrochem. Commun., 2007,9:431-435. doi: 10.1016/j.elecom.2006.09.029

    12. [12]

      Zhu X D, Le S R, Chen X B, Sun K N, Yuan Y X, Zhang N Q. Chemical Compatibility, Thermal Expansion Matches and Electrochemical Performance of SrCo0.8Fe0.2O3-δ-La0.45Ce0.55O2-δ Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells[J]. Int. J. Hydrogen Energy, 2011,36:12549-12554. doi: 10.1016/j.ijhydene.2011.06.111

    13. [13]

      Fu Q X, Tietz F, Stöver D. La0.4Sr0.6Ti1-xMnxO3-δ Perovskites as Anode Materials for Solid Oxide Fuel Cells[J]. J. Electrochem. Soc., 2006,153D74. doi: 10.1149/1.2170585

    14. [14]

      Escudero M J, Irvine J T S, Daza L. Development of Anode Material Based on La-Substituted SrTiO3 Perovskites Doped with Manganese and/or Gallium for SOFC[J]. J. Power Sources, 2009,192:43-50. doi: 10.1016/j.jpowsour.2008.11.132

    15. [15]

      Liu Q, Dong X H, Xiao G L, Zhao F, Chen F L. A Novel Electrode Material for Symmetrical SOFCs[J]. Adv. Mater., 2010,22:5478-5482. doi: 10.1002/adma.201001044

    16. [16]

      Munoz-Garcia A B, Bugaris D E, Pavone M, Hodges J P, Huq A, Chen F, zur Loye H C, Carter E A. Unveiling Structure-Property Relationships in Sr2Fe1.5Mo0.5O6-δ, An Electrode Material for Symmetric Solid Oxide Fuel Cells[J]. J. Am. Chem. Soc., 2012,134:6826-6833. doi: 10.1021/ja300831k

    17. [17]

      Xie Z X, Zhao H L, Du Z H, Chen T, Chen N, Liu X T, Skinner S J. Effects of Co Doping on the Electrochemical Performance of Double Perovskite Oxide Sr2MgMoO6-δ as an Anode Material for Solid Oxide Fuel Cells[J]. J. Phys. Chem. C, 2012,116:9734-9743. doi: 10.1021/jp212505c

    18. [18]

      Du Z H, Zhao H L, Yi S, Xia Q, Gong Y, Zhang Y, Cheng X, Li Y, Gu L, Świerczek K. High-Performance Anode Material Sr2FeMo0.65Ni0.35O6-δ with In Situ Exsolved Nanoparticle Catalyst[J]. ACS Nano, 2016,10:8660-8669. doi: 10.1021/acsnano.6b03979

    19. [19]

      Falcón H, Barbero J A, Araujo G, Casais M T, Martínez-Lope M J, Alonso J A, Fierro J L G. Double Perovskite Oxides A2FeMoO6-δ (A= Ca, Sr and Ba) as Catalysts for Methane Combustion Appl[J]. Catal. B-Environ., 2004,53:37-45. doi: 10.1016/j.apcatb.2004.05.004

    20. [20]

      Vasala S, Yamauchi H, Karppinen M. Role of SrMoO4 in Sr2MgMoO6 Synthesis[J]. J. Solid State Chem., 2011,184:1312-1317. doi: 10.1016/j.jssc.2011.03.045

    21. [21]

      Dager P K, Chanquía C M, Mogni L, Caneiro A. Synthesis of Pure-Phase Sr2MgMoO6 Nanostructured Powder by the Combustion Method[J]. Mater. Lett., 2015,141:248-251. doi: 10.1016/j.matlet.2014.11.037

    22. [22]

      Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Pérez-Coll D, Aranda M A G, Núñez P. Synthesis, Phase Stability and Electrical Conductivity of Sr2MgMoO6-δ Anode[J]. Mater. Res. Bull., 2008,43:2441-2450. doi: 10.1016/j.materresbull.2007.07.032

    23. [23]

      Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Gabás M, Núñez P, Aranda M A G, Ramos-Barrado J R. Redox Behaviour, Chemical Compatibility and Electrochemical Performance of Sr2MgMoO6-δ as SOFC Anode[J]. Solid State Ionics, 2010,180:1672-1682. doi: 10.1016/j.ssi.2009.11.005

    24. [24]

      Jiang L, Liang G, Han J T, Huang Y H. Effects of Sr-Site Deficiency on Structure and Electrochemical Performance in Sr2MgMoO6 for Solid-Oxide Fuel Cell[J]. J. Power Sources, 2014,270:441-448. doi: 10.1016/j.jpowsour.2014.07.079

    25. [25]

      Wei T, Huang Y H, Zhang Q, Yuan L X, Yang J Y, Sun Y M, Hu X L, Zhang W X, Goodenough J B. Thermoelectric Solid-Oxide Fuel Cells with Extra Power Conversion from Waste Heat[J]. Chem. Mater., 2012,24:1401-1403. doi: 10.1021/cm300159w

    26. [26]

      Huang Y H, Liang G, Croft M, Lehtimäki M, Karppinen M, Goodenough J B. Double-Perovskite Anode Materials Sr2MMoO6 (M=Co, Ni) for Solid Oxide Fuel Cells[J]. Chem. Mater., 2009,21:2319-2326. doi: 10.1021/cm8033643

    27. [27]

      Zhu X D, Zhang N D, Wu L J, Sun K N, Yuan Y X. Preparation and Performance of Large-Area La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte for Intermediate Temperature Solid Oxide Fuel Cell[J]. J. Power Sources, 2010,195:7583-7586. doi: 10.1016/j.jpowsour.2010.05.060

    28. [28]

      Li F S, Jiang L, Zeng R, Wang F, Xu Y X, Huang Y H. Hetero-Structured La0.5Sr0.5CoO3-δ/LaSrCoOδ Cathode with High Electrocatalytic Activity for Solid-Oxide Fuel Cells[J]. Int. J. Hydrogen Energy, 2017,42:29463-29471. doi: 10.1016/j.ijhydene.2017.10.001

    29. [29]

      Li F S, Xu Y X, Xia S B, Liu J J, Yan Y X, Cheng F X, Jiang L, Huang Y H. LaSrCoOδ@La0.5Sr0.5CoO3-δ Core-Shell Hybrid as the Cathode Materials for Solid Oxide Fuel Cells[J]. J. Alloy. Compd., 2020,819152996. doi: 10.1016/j.jallcom.2019.152996

    30. [30]

      Bernuy-Lopez C, Allix M, Bridges C A, Claridge J B, Rosseinsky M J. Sr2MgMoO6-δ: Structure, Phase Stability, and Cation Site Order Control of Reduction[J]. Chem. Mater., 2007,19:1035-1043. doi: 10.1021/cm0624116

    31. [31]

      Adler S B. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes[J]. Chem. Rev., 2004,104:4791-4844. doi: 10.1021/cr020724o

    32. [32]

      Klotz D, Weber A, Ivers-Tiffée E. Practical Guidelines for Reliable Electrochemical Characterization of Solid Oxide Fuel Cells[J]. Electrochim. Acta, 2017,227:110-126. doi: 10.1016/j.electacta.2016.12.148

  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(7)
  • Abstract views(702)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return