Citation: Wen-Long LIU, Bin WANG, Yue-Li WEN, Faraz Ahmad, Cheng-Da LI, Wei HUANG. Effect of P-Al/NaX Structure and Acid-Base Control on the Side-Chain Alkylation of Toluene with Methanol[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1970-1980. doi: 10.11862/CJIC.2022.186 shu

Effect of P-Al/NaX Structure and Acid-Base Control on the Side-Chain Alkylation of Toluene with Methanol

  • Corresponding author: Yue-Li WEN, 727908741@qq.com
  • Received Date: 4 March 2022
    Revised Date: 11 August 2022

Figures(10)

  • P-Al/NaX catalyst was in-situ synthesized by hydrothermal method, and its acidity and basicity were controlled by impregnation of NaOH, and its catalytic performance for side-chain alkylation of toluene with methanol was tested. Combined with the characterizations of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, and the catalytic activity data, it was found that the structure of the synthesized Na 13Al24Si13P11O96·H2O showed good catalytic performance of side-chain alkylation of toluene with methanol after in-situ loading of P and Al. With the NaOH loading increasing, the selectivity of ethylbenzene and styrene increased first and then decreased. When the NaOH loading (mass fraction) was 9%, the selectivity of styrene was the highest (45.84%), and the total yield of ethylbenzene and styrene reached 63.08%. This may be because the loading of NaOH was conducive to the increase of the number of strong alkaline sites and weak acidic sites, and the high number of strong alkaline sites and weak acidic sites were conducive to the side chain alkylation of toluene with methanol.
  • 加载中
    1. [1]

      Chen H H, Li X C, Zhao G Q, Gu H B, Zhu Z R. Free Radical Mechanism Investigation of the Side-Chain Alkylation of Toluene with Methanol on Basic Zeolites X[J]. Chin. J. Catal., 2015,36(10):1726-1732. doi: 10.1016/S1872-2067(15)60896-8

    2. [2]

      Martin A J, Mitchell S, Scholder O, Verel R, Hauert R, Bernard L, Jensen C, Schwefer M, Perez-Ramirez J. Elucidating the Distribution and Speciation of Boron and Cesium in BCsX Zeolite Catalysts for Styrene Production[J]. ChemPhysChem, 2018,19(4):437-445. doi: 10.1002/cphc.201701086

    3. [3]

      Cavani F, Trifiro F. Alternative Processes for the Production of Styrene[J]. Appl. Catal. A-Gen., 1995,133(2):219-239. doi: 10.1016/0926-860X(95)00218-9

    4. [4]

      Li P D, Han Q, Zhang X M, Yuan Y Y, Zhang Y F, Guo H C, Xu L, Xu L. A New Insight into the Reaction Behaviors of Side-Chain Alkylation of Toluene with Methanol over CsX[J]. Catal. Sci. Technol., 2018,8(13):3346-3356. doi: 10.1039/C8CY00597D

    5. [5]

      Serra J M, Corma A, Farrusseng D, Baumes L, Mirodatos C, Flego C, Perego C. Styrene from Toluene by Combinatorial Catalysis[J]. Catal. Today, 2003,81(3):425-436. doi: 10.1016/S0920-5861(03)00142-1

    6. [6]

      Hattori H. Solid Base Catalysts: Fundamentals and Their Applications in Organic Reactions[J]. Appl. Catal. A-Gen., 2015,504:103-109. doi: 10.1016/j.apcata.2014.10.060

    7. [7]

      Philippou A, Anderson M W. Solid-State NMR Investigation of the Alkylation of Toluene with Methanol over Basic Zeolite X[J]. J. Am. Chem. Soc., 1994,116(13):5774-5783. doi: 10.1021/ja00092a031

    8. [8]

      Yu Q J, Li J Z, Wei C C, Zeng S, Xu S T, Liu Z M. Role of Ball Milling During Cs/X Catalyst Preparation and Effects on Catalytic Performance in Side-Chain Alkylation of Toluene with Methanol[J]. Chin. J. Catal., 2020,41(8):1268-1278. doi: 10.1016/S1872-2067(20)63567-7

    9. [9]

      Yamaguchi N, Kobayashi A, Sodesawa T, Nozaki F. Side-Chain Alkylation of Toluene with Methanol over Cs2O-Activated Carbon Catalyst[J]. React. Kinet. Catal. Lett., 1984,25(1/2):11-15.

    10. [10]

      Hao C Y, Wen Y L, Wang B, Ahmad F, Liu Y H, Li H J, Huang W. Synthesis of HTLcs Modified by K3PO4 for Side Chain Alkylation of Toluene with Methanol[J]. Green Energy Environ., 2021,6(6):961-967. doi: 10.1016/j.gee.2020.06.007

    11. [11]

      Lee J M, Min Y J, Lee K B, Jeon S G, Na J G, Ryu H J. Enhancement of CO2 Sorption Uptake on Hydrotalcite by Impregnation with K2CO3[J]. Langmuir, 2010,26(24):18788-18797. doi: 10.1021/la102974s

    12. [12]

      Lee H, Lee S, Ryoo R, Choi M. Revisiting Side-Chain Alkylation of Toluene to Styrene: Critical Role of Microporous Structures in Catalysts[J]. J. Catal., 2019,373:25-36. doi: 10.1016/j.jcat.2019.03.027

    13. [13]

      Han H, Liu M, Nie X W, Ding F S, Wang Y R, Li J J, Guo X W, Song C S. The Promoting Effects of Alkali Metal Oxide in Side-Chain Alkylation of Toluene with Methanol over Basic Zeolite X[J]. Microporous Mesoporous Mater., 2016,234:61-72. doi: 10.1016/j.micromeso.2016.06.045

    14. [14]

      Li X, Lu J R, Li Y, Yu J H. Roles of Hydroxyl Groups During Side-Chain Alkylation of Toluene with Methanol over Zeolite Na-Y: A Density Functional Theory Study[J]. Chin. J. Chem., 2017,35(5):716-722. doi: 10.1002/cjoc.201600594

    15. [15]

      Bosáček V, Klik R, Genoni F, Spano G, Rivetti F, Figueras F. Terminal and Bridging Methoxyls on Zeolites Detected by 13C Magic Angle Spinning NMR Spectroscopy[J]. Magn. Reson. Chem., 1999,37(13):S135-S141. doi: 10.1002/(SICI)1097-458X(199912)37:133.0.CO;2-Y

    16. [16]

      Wang B, Huang W, Wen Y L, Zuo Z, Gao Z H, Yin L H. Styrene from Toluene by Side Chain Alkylation over a Novel Solid Acid-Base Catalyst[J]. Catal. Today, 2011,173(1):38-43. doi: 10.1016/j.cattod.2011.05.038

    17. [17]

      Hong Z, Xiong C F, Zhao G Q, Zhu Z R. Side-Chain Alkylation of Toluene with Methanol to Produce Styrene: An Overview[J]. Catal. Sci. Technol., 2019,9(24):6828-6840. doi: 10.1039/C9CY01581G

    18. [18]

      Wieland W S, Davis R J, Garces J M. Side-Chain Alkylation of Toluene with Methanol over Alkali-Exchanged Zeolites X, Y, L, and β[J]. J. Catal., 1998,173(2):490-500. doi: 10.1006/jcat.1997.1952

    19. [19]

      Tope B B, Alabi W O, Aitani A M, Hattori H, Al-Khattaf S S. Side-Chain Alkylation of Toluene with Methanol to Styrene over Cesium Ion-Exchanged Zeolite X Modified with Metal Borates[J]. Appl. Catal. A-Gen., 2012,443:214-220.

    20. [20]

      Alabi W O, Tope B B, Jermy R B, Aitani A M, Hattori H, Al-Khattaf S S. Modification of Cs-X for Styrene Production by Side-Chain Alkylation of Toluene with Methanol[J]. Catal. Today, 2014,226:117-123. doi: 10.1016/j.cattod.2013.08.004

    21. [21]

      Choi Y S, Kim H, Shin S H, Cheong M, Kim Y J, Jang H G, Kim H S, Lee J S. K3PO4-Catalyzed Carboxylation of Amines to 1, 3-Disubstituted Ureas: A Mechanistic Consideration[J]. Appl. Catal. B-Environ., 2014,144:317-324. doi: 10.1016/j.apcatb.2013.07.017

    22. [22]

      Zhang Z H, Shan W L, Li H, Zhu W C, Zhang N, Tang Y, Yu J H, Jia M J, Zhang W X, Zhang C L. Side-Chain Alkylation of Toluene with Methanol over Boron Phosphate Modified Cesium Ion-Exchanged Zeolite X Catalysts[J]. J. Porous Mater., 2015,22(5):1179-1186. doi: 10.1007/s10934-015-9994-9

    23. [23]

      LIU Y H. Modification of NaX Catalysts by Solid⁃Liquid Continuous Mixing Method and Its Application in Side ⁃ Chain Alkylation of Toluene with Methanol. Taiyuan: Taiyuan University of Technology, 2021: 26-28

    24. [24]

      Diaz E, Munoz E, Vega A, Ordonez S. Enhancement of the CO2 Retention Capacity of Y Zeolites by Na and Cs Treatments: Effect of Adsorption Temperature and Water Treatment[J]. Ind. Eng. Chem. Res., 2008,47(2):412-418. doi: 10.1021/ie070685c

    25. [25]

      Sethia G, Somani R S, Bajaj H C. Sorption of Methane and Nitrogen on Cesium Exchanged Zeolite-X: Structure, Cation Position and Adsorption Relationship[J]. Ind. Eng. Chem. Res., 2014,53(16):6807-6814. doi: 10.1021/ie5002839

    26. [26]

      Yagi F, Kanuka N, Tsuji H, Nakata S, Kita H, Hattori H. Cs-133 and Na-23 Mas NMR Studies of Zeolite X Containing Cesium[J]. Microporous Mater., 1997,9(5/6):229-235.

    27. [27]

      Wang H H, Wang B, Wen Y L, Huang W. High-Yielded Side-Chain Alkylation from Toluene and Methanol over K3PO4/CsX[J]. Catal. Lett., 2017,147(1):161-166. doi: 10.1007/s10562-016-1911-6

    28. [28]

      Setiadji S, Sundari C D D, Aprilia V, Sumiyanto E, Novianti I, Ivansyah A L. Synthesis of Zeolite NaX Using Elephant Grass (Pennisetum Purpureum) as a Silica Source and Its Characterization[J]. J. Phys.: Conf. Ser., 2019,1402066016. doi: 10.1088/1742-6596/1402/6/066016

    29. [29]

      Sadeghi M, Farhadi S, Zabardasti A. Fabrication of a Novel Magnetic Cds Nanorod/NiFe2O4/NaX Zeolite Nanocomposite with Enhanced Sonocatalytic Performance in the Degradation of Organic Dyes[J]. New J. Chem., 2020,44(20):8386-8401. doi: 10.1039/D0NJ01393E

    30. [30]

      Li H J, Wang B, Wen Y L, Hao C Y, Liu Y H, Huang W. Effect of Relative Percentage of Acid and Base Sites on the Side-Chain Alkylation of Toluene with Methanol[J]. RSC Adv., 2021,11(21):12703-12709. doi: 10.1039/D1RA00263E

    31. [31]

      Hernandez-Martinez H, Coutino-Gonzalez E, Espejel-Ayala F, Ruiz-Trevino F A, Guerrero-Heredia G, Garcia-Riego A L, Olvera L I. Mixed Matrix Membranes Based on Fluoropolymers with M-and P-Terphenyl Fragments for Gas Separation Applications[J]. ACS Omega, 2021,6(7):4921-4931. doi: 10.1021/acsomega.0c05978

    32. [32]

      Jantarit N, Tayraukham P, Osakoo N, Fottinger K, Wittayakun J. Formation of EMT/FAU Intergrowth and Nanosized Sod Zeolites from Synthesis Gel of Zeolite NaX Containing Ethanol[J]. Mater. Res. Express, 2020,7(7)075011. doi: 10.1088/2053-1591/aba55a

    33. [33]

      Sayyedan F, Enayati M. On Structure and Oxidation Behaviour of Non-stoichiometric Amorphous Aluminium Phosphate Coating[J]. Surf. Eng., 2019,35(8):670-676. doi: 10.1080/02670844.2018.1560912

    34. [34]

      Song L L, Li Z R, Zhang R Z, Zhao L F, Li W. Alkylation of Toluene with Methanol: The Effect of K Exchange Degree on the Direction to Ring or Side-Chain Alkylation[J]. Catal. Commun., 2012,19:90-95. doi: 10.1016/j.catcom.2011.12.033

    35. [35]

      Podgornov E, Prosvirin I, Bukhtiyarov V. XPS, TPD and TPR Studies of Cs-O Complexes on Silver: Their Role in Ethylene Epoxidation[J]. J. Mol. Catal. A: Chem., 2000,158(1):337-343. doi: 10.1016/S1381-1169(00)00101-1

    36. [36]

      Larichev Y V, Moroz B L, Zaikovskii V I, Yunusov S M, Kalyuzhnaya E S, Shur V B, Bukhtiyarov V I. XPS and TEM Studies on the Role of the Support and Alkali Promoter in Ru/MgO and Ru-Cs+/MgO Catalysts for Ammonia Synthesis[J]. J. Phys. Chem. C, 2007,111(26):9427-9436. doi: 10.1021/jp066970b

    37. [37]

      Okamoto Y, Kubota T. Decarbonylation of Group Six Metal Carbonyl M(CO)6 (M=Cr, Mo, W) Encaged in FAU Zeolites: Basicity of Framework Oxygen[J]. Microporous Mesoporous Mater., 2001,48(1/2/3):301-307.

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(2)
  • Abstract views(493)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return