Citation: Bin GUO, Jing YANG, Wen-Xin LU, Peng WANG. Effect of Coordination Environment on Fenton-like Reactivity in Cu(Ⅱ) Metal-Organic Frameworks[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1981-1992. doi: 10.11862/CJIC.2022.185 shu

Effect of Coordination Environment on Fenton-like Reactivity in Cu(Ⅱ) Metal-Organic Frameworks

Figures(13)

  • Using copper acetate monohydrate as a copper source, 1D chain coordination polymer {[(Cu(OAc)2)2(L)]·3CH3CN}n (1, OAc-=CH3CO2-) was synthesized using 2, 6-bis(4'-pyridyl)-4-methylaniline (L) as bridged pyridine ligand, and 2D network coordination polymer {[Cu(IPA)(L)(H2O)]2·H2IPA·H2O}n (2) was prepared by L and isophthalic acid (H2IPA) as the co-ligand. It can be seen from the single crystal structure analysis that the copper atoms in complex 1 are located in the center of the tetrahedral coordination environment in the [CuNO4]2 clusters, and the copper atoms in complex 2 are in the [CuNO3] deformed hexahedral coordination environment. The comparative experiments on Fenton - like photocatalytic degradation with methylene blue as substrate show that the catalytic effect of complex 1 with Cu—N and Cu—O coordination environment was better than that of HKUST-1 with the same tetrahedral coordination environment. The comparison of the catalytic performance of complexes 1 and 2 also proves that the photocatalytic degradation activity of the open mononuclear copper coordination center was better than that of the copper coordination center in the cluster complex. Benefiting from the stability of the ligands and the existence of the framework structure, both complexes had higher catalytic activity and recyclability compared with the catalytic performance of the unconstrained copper acetate under the same conditions. The band gaps of the two complexes were calculated through UV-Vis spectra. The stability of the complexes after the reaction was confirmed by X-ray diffraction and inductively coupled plasma mass spectrometry. By adding free radical scavengers benzoquinone, tertiary butanol, and triethanolamine, it is confirmed that the catalytic process is a Fenton-like reaction mechanism of the hydroxyl radical process.
  • 加载中
    1. [1]

      Wei Y S, Zhang M, Zou R Q, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites[J]. Chem. Rev., 2020,120(21):12089-12174. doi: 10.1021/acs.chemrev.9b00757

    2. [2]

      Zuo Q, Liu T T, Chen C S, Ji Y, Gong X Q, Mai Y Y, Zhou Y F. Ultrathin Metal-Organic Framework Nanosheets with Ultrahigh Loading of Single Pt Atoms for Efficient Visible-Light-Driven Photocatalytic H2 Evolution[J]. Angew. Chem. Int. Ed., 2019,58(30):10198-10203. doi: 10.1002/anie.201904058

    3. [3]

      Liu X, Xu Y S, Liu Q Q, Zhang W J. 8-Hydroxyquinoline and Eu3+ Incorporated Metal-Organic Framework Nanosystems with Tunable Emissions for White Light and Anticounterfeiting Applications[J]. ACS Appl. Nano Mater., 2021,4(1):313-321. doi: 10.1021/acsanm.0c02671

    4. [4]

      Daglar H, Erucar I, Keskin S. Exploring the Performance Limits of MOF/Polymer MMMs for O2/N2 Separation Using Computational Screening[J]. J. Membr. Sci., 2020,618118555.

    5. [5]

      Carney J, Roundy D, Simon C M. Statistical Mechanical Model of Gas Adsorption in a Metal-Organic Framework Harboring a Rotaxane Molecular Shuttle[J]. Langmuir, 2020,36(43):13112-13123. doi: 10.1021/acs.langmuir.0c02839

    6. [6]

      Fan S T, Qiu Z J, Xu R Y, Zhang S X, Chen Z H, Nie Z J, Shu H R, Guo K, Zhang S, Li B J. Ultrahigh Carbon Dioxide-Selective Composite Membrane Containing a γ-CD-MOF Layer[J]. ACS Appl. Mater. Interfaces, 2021,13(11):13034-13043. doi: 10.1021/acsami.0c18861

    7. [7]

      Li H, Shi L F, Li C, Fu X, Huang Q, Zhang B. Metal-Organic Framework Based on α-Cyclodextrin Gives High Ethylene Gas Adsorption Capacity and Storage Stability[J]. ACS Appl. Mater. Interfaces, 2020,12(30):34095-34104. doi: 10.1021/acsami.0c08594

    8. [8]

      Bhattacharya S, Ayass W W, Taffa D H, Nisar T, Balster T, Hartwig A, Wagner V, Wark M, Kortz U. Polyoxopalladate-Loaded Metal-Organic Framework (POP@MOF): Synthesis and Heterogeneous Catalysis[J]. Inorg. Chem., 2020,59(15):10512-10521. doi: 10.1021/acs.inorgchem.0c00875

    9. [9]

      Bibi R, Huang H L, Kalulu M, Shen Q H, Wei L F, Oderinde O, Li N X, Zhou J C. Synthesis of Amino-Functionalized Ti-MOF Derived Yolk-Shell and Hollow Heterostructures for Enhanced Photocatalytic Hydrogen Production under Visible Light[J]. ACS Sustain. Chem. Eng., 2019,7(5):4868-4877. doi: 10.1021/acssuschemeng.8b05352

    10. [10]

      Sun D R, Kim D P. Hydrophobic MOFs@Metal Nanoparticles@ COFs for Interfacially Confined Photocatalysis with High Efficiency[J]. ACS Appl. Mater. Interfaces, 2020,12(18):20589-20595. doi: 10.1021/acsami.0c04537

    11. [11]

      Fang Z B, Liu T T, Liu J, Jin S, Wu X P, Gong X Q, Wang K C, Yin Q, Liu T F, Cao R, Zhou H C. Boosting Interfacial Charge-Transfer Kinetics for Efficient Overall CO2 Photoreduction via Rational Design of Coordination Spheres on Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2020,142(28):12515-12523. doi: 10.1021/jacs.0c05530

    12. [12]

      Tian H X, Zha M, Ding J G, Zhu L M, Li B L, Wu B. Visible-Light-Driven and Ultrasonic-Assisted Copper Metal-Organic Frameworks and Graphene Oxide Nanocomposite for Decolorization of Dyes[J]. J. Solid State Chem., 2021,304122627. doi: 10.1016/j.jssc.2021.122627

    13. [13]

      Li X L, Yu J R, Lu Z Y, Duan J X, Fry H C, Gosztola D J, Maindan K, Rajasree S S, Deria P. Photoinduced Charge Transfer with a Small Driving Force Facilitated by Exciplex-like Complex Formation in Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2021,143(37):15286-15297. doi: 10.1021/jacs.1c06629

    14. [14]

      Gwon K, Han I, Lee S, Kim Y, Lee D N. Novel Metal-Organic Framework-Based Photocrosslinked Hydrogel System for Efficient Antibacterial Applications[J]. ACS Appl. Mater. Interfaces, 2020,12(18):20234-20242. doi: 10.1021/acsami.0c03187

    15. [15]

      Hazra A, Bej S, Mondal A, Murmu N C, Banerjee P. Discerning Detection of Mutagenic Biopollutant TNP from Water and Soil Samples with Transition Metal-Containing Luminescence Metal-Organic Frameworks[J]. ACS Omega, 2020,5(26):15949-15961. doi: 10.1021/acsomega.0c01194

    16. [16]

      Yu H, Fan M, Liu Q, Su Z M, Li X, Pan Q Q, Hu X L. Two Highly Water-Stable Imidazole-Based Ln-MOFs for Sensing Fe3+, Cr2O72-/CrO42- in a Water Environment[J]. Inorg. Chem., 2020,59(3):2005-2010. doi: 10.1021/acs.inorgchem.9b03364

    17. [17]

      Zhang P, Song B, Li Z, Zhang J J, Ni A Y, Chen J, Ni J, Liu S Q, Duan C Y. A "Turn-On" Cr3+ Ion Probe Based on Non-luminescent Metal-Organic Framework—New Strategy to Prepare a Recovery Probe[J]. J. Mater. Chem. A, 2021,9(23):13552-13561. doi: 10.1039/D1TA00062D

    18. [18]

      Nandi S, Reinsch H, Biswas S. An Acetoxy Functionalized Al(Ⅲ) Based Metal-Organic Framework Showing Selective "Turn On" Detection of Perborate in Environmental Samples[J]. Dalton Trans., 2020,49(48):17612-17620. doi: 10.1039/D0DT02422H

    19. [19]

      Ma X, Li H, Yang W J, Ma G Y, Zhen L, Jiang H L. Modulating Coordination Environment of Single-Atom Catalysts and Their Proximity to Photosensitive Units for Boosting MOF Photocatalysis[J]. J. Am. Chem. Soc., 2021,143(31):12220-12229. doi: 10.1021/jacs.1c05032

    20. [20]

      Guo S, Zhao Y, Wang C, Jiang H Q, Chen G J. A Single-Atomic Noble Metal Enclosed Defective MOF via Cryogenic UV Photoreduction for CO Oxidation with Ultrahigh Efficiency and Stability[J]. ACS Appl. Mater. Interfaces, 2020,12(23):26068-26075. doi: 10.1021/acsami.0c06898

    21. [21]

      Stolar T, Prašnikar A, Martinez V, Karadeniz B, Bjelić A, Mali G, Friščić T, Likozar B, Užarević K. Scalable Mechanochemical Amorphization of Bimetallic Cu-Zn MOF-74 Catalyst for Selective CO2 Reduction Reaction to Methanol[J]. ACS Appl. Mater. Interfaces, 2021,13(2):3070-3077. doi: 10.1021/acsami.0c21265

    22. [22]

      Wu T K, Shi Y Z, Wang Z W, Liu C, Bi J H, Yu Y, Wu L. Unsaturated Ni Centers Mediated the Coordination Activation of Benzylamine for Enhancing Photocatalytic Activity over Ultrathin Ni(Ⅱ) MOF-74 Nanosheets[J]. ACS Appl. Mater. Interfaces, 2021,13(51):61286-61295. doi: 10.1021/acsami.1c20128

    23. [23]

      Yu L H, Fan W Q, He N, Liu Y C, Han X, Qin F Y, Ding J R, Zhu G X, Bai H Y, Shi W D. Effect of Unsaturated Coordination on Photoelectrochemical Properties of Ni-MOF/TiO2 Photoanode for Water Splitting[J]. Int. J. Hydrog. Energy, 2021,46(34):17741-17750.

    24. [24]

      Tang J X, Li P, Islamoglu T, Li S W, Zhang X, Son F A, Chen Z J, Mian M R, Lee S J, Wu J, Farha O K. Micropore Environment Regulation of Zirconium MOFs for Instantaneous Hydrolysis of an Organophosphorus Chemical[J]. Cell Rep. Phys. Sci., 2021,2(10)100612.

    25. [25]

      Liu G, Wang Y, Xue Q D, Wen Y C, Hong X H, Ullah K. TiO2/Cu-MOF/PPy Composite as a Novel Photocatalyst for Decomposition of Organic Dyes[J]. J. Mater. Sci.—Mater. Electron., 2021,32(4):4097-4109.

    26. [26]

      WANG P, ZHAO J J, WANG Z W, CAO D L, XU J Z. Synthesis and Structure Study of a Novel Bridged Bipyridine Compound[J]. Chinese J. Inorg. Chem., 2011,31(5):757-761.  

    27. [27]

      WANG Q B, LI X, WANG H Y, LU W X, WANG P. Regulation of Ligand Scale on Structure and Photocatalytic Degradation Activity of Complex: From Zero-Dimensional to One-Dimensional Cu(Ⅱ) Complexes[J]. Chinese J. Inorg. Chem., 2020,36(2):233-240.  

    28. [28]

      Shi C Y, Zhou X Y, Liu D, Li L T, Xu M Y, Sakiyama H, Muddassir M, Wang J. A New 3D High Connection Cu-Based MOF Introducing a Flexible Tetracarboxylic Acid Linker: Photocatalytic Dye Degradation[J]. Polyhedron, 2021,208115441. doi: 10.1016/j.poly.2021.115441

    29. [29]

      Li Y M, Chu S L, Shen H D, Xia Q N, Robertson A W, Masa J, Siddiqui U, Sun Z Y. Achieving Highly Selective Electrocatalytic CO2 Reduction by Tuning CuO-Sb2O3 Nanocomposites[J]. ACS Sustain. Chem. Eng., 2020,8(12):4948-4954. doi: 10.1021/acssuschemeng.0c00800

    30. [30]

      Shang Q G, Liu N N, You D, Cheng Q R, Liao G Y, Pan Z Q. The Application of Ni and Cu-MOFs as Highly Efficient Catalysts for Visible Light-Driven Tetracycline Degradation and Hydrogen Production[J]. J. Mater. Chem. C, 2021,9(1):238-248. doi: 10.1039/D0TC04733C

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    19. [19]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    20. [20]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

Metrics
  • PDF Downloads(24)
  • Abstract views(1025)
  • HTML views(381)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return