Citation: Zhi-Yao WANG, Zhi-Gang FANG, Jie WANG, Zhi-Long MAO, Xin-Yu ZENG, Ting-Hui WU, Jia SONG. Analysis of Electronic, Optical, and Magnetic Properties of Cluster ConMoS (n=1-5) Based on Density Functional Theory[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1512-1522. doi: 10.11862/CJIC.2022.170 shu

Analysis of Electronic, Optical, and Magnetic Properties of Cluster ConMoS (n=1-5) Based on Density Functional Theory

  • Corresponding author: Zhi-Gang FANG, Lnfzg@163.com
  • Received Date: 2 March 2022
    Revised Date: 26 June 2022

Figures(9)

  • To investigate the electronic, optical, and magnetic properties of the cluster ConMoS (n=1-5) at the theoretical level and to clarify its inherent relevance, the structure of the cluster was optimized and analyzed at the B3LYP/def2-TZVP quantum chemical level and multiple spin multiplexes based on topological principles and density functional theory. The results show that there are 21 stable configurations of the cluster ConMoS, which mostly exist in stereo form, and the conformation na is the most stable and the overall cluster stability tends to be more stable as the cluster size increases; the analysis of NPA (natural population analysis) charge, electrostatic potential, electrophilic index, ionization potential, optical electronegativity, and refractive index, etc. shows that metal atoms have a high probability of losing electrons and non-metal atoms are relatively more likely to gain electrons; the configuration 5a in the cluster Co5MoS has high electron gain and loss ability, reactivity, and refractive index in the most stable configuration, but it is the least chemically stable; Co and Mo atoms are prone to nucleophilic reactions and S atoms are prone to electrophilic reactions, and the active site is predicted provisionally from the electrostatic potential extreme site; the analysis of the spin population, atomic magnetic moments, orbital magnetic moments, and density of states of the cluster reveals that the magnetic properties of the cluster are mainly provided by the d orbital of the Co atom, the non-metallic atom S contributes less to the magnetic properties and the orbital hybridisation has an effect on the magnetic properties to some extent, the cluster Co3MoS exhibits more stable and excellent magnetic properties than other size clusters. It is concluded that the cluster Co3MoS has a good performance in magnetic properties and configuration 5a has some potential in the field of activity and optics.
  • 加载中
    1. [1]

      Tang B Z, Liu X P, Li D M, Yu P, Xia L. Effect of Ni Substitution on the Formability and Magnetic Properties of Gd50Co50 Amorphous Alloy[J]. Chin. Phys. B, 2020,29056401. doi: 10.1088/1674-1056/ab7da8

    2. [2]

      Xu Y F, Chen Y Y, Schützendübe P, Zhu S L, Huang Y, Ma Z Q, Liu Y C, Wang Z M. Thermal Oxidation of Amorphous CuxZr1-x Alloys: Role of Composition-Dependent Thermodynamic Stability[J]. Appl. Surf. Sci., 2020,503144376. doi: 10.1016/j.apsusc.2019.144376

    3. [3]

      QIN Y, FANG Z G, ZHANG W, LI L H, LIAO W. The Study on the Catalytic Properties of Cluster Co3NiB in the Hydrogen Evolution Reaction[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2020,44(1):56-62.  

    4. [4]

      QIN Y, FANG Z G, ZHAO L L, LIAO W, XU Y. The Study on the Dynamics and Thermodynamics of Isomeric Transformation of Cluster Co3NiB2[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2021,45(1):67-74.  

    5. [5]

      ZHENG X X, FANG Z G, QIN Y, HOU Q Q, WU T H, MAO Z L. Electronic Properties of Cluster Fe3Ni3[J]. Journal of Guizhou University (Natural Sciences), 2021,38(5):7-12.  

    6. [6]

      FANG Z G, WANG Z Y, ZHENG X X, QIN Y, MAO Z L, ZENG X Y, ZHU Y W, WANG Q. Study on the Dolarizability, Dipole Moment and Density of States of Cluster Co3NiB2[J]. Journal of Guizhou University (Natural Sciences), 2022,39(1):17-24.  

    7. [7]

      HOU Q Q, FANG Z G, QIN Y, ZHU Y W. Study on the Polarization of Fe 4P Clusters[J]. Journal of Guangxi Normal University (Natural Science Edition), 2021,39(6):140-146.  

    8. [8]

      Ganesh R S, Durgadevi E, Silambarasan K, Navaneethan M, Ponnusamy S, Kong C Y, Muthamizhchelvan C, Shimura Y, Hayakawa Y. Effect of Ethylenediamine on Morphology of 2D Co-Mo-S@Ng Hybrids and Their Enhanced Electrocatalytic Activity for Dsscs Application[J]. Mater. Sci. Semicond. Process, 2020,105104725. doi: 10.1016/j.mssp.2019.104725

    9. [9]

      Yang S H, Park S K, Kim J K, Kang Y C. A MOF-Mediated Strategy for Constructing Human Backbone-like CoMoS3@N-Doped Carbon Nanostructures with Multiple Voids as a Superior Anode for Sodium-Ion Batteries[J]. J. Mater. Chem. A, 2019,7:13751-13761. doi: 10.1039/C9TA03873F

    10. [10]

      Patil S J, Lee D W. Scalable and Ascendant Synthesis of Carbon Cloth Coated Hierarchical Core-Shell CoMoS@Co(OH)2 for Flexible and High-Performance Supercapacitors[J]. J. Mater. Chem. A, 2018,6:9592-9603. doi: 10.1039/C8TA01931B

    11. [11]

      Zheng X J, Guo J H, Shi Y T, Xiong F Q, Zhang W H, Ma T L, Li C. Low-Cost and High-Performance CoMoS4 and NiMoS4 Counter Electrodes for Dye-Sensitized Solar Cells[J]. Chem. Commun., 2013,49:9645-9647. doi: 10.1039/c3cc45064c

    12. [12]

      Hao X Q, Jin Z L, Min S X, Lu G G. Modulating Photogenerated Electron Transfer with Selectively Exposed Co-Mo Facet on a Novel Amorphous g-C3N4CoxMo1-xS2 Photocatalyst[J]. RSC Adv., 2016,6:23709-23717. doi: 10.1039/C5RA22102A

    13. [13]

      Liu D D, Jin Z L, Bi Y P. Charge Transmission Channel Construction between a MOF and rGO by Means of Co-Mo-S Modification[J]. Catal. Sci. Technol., 2017,7:4478-4488. doi: 10.1039/C7CY01514C

    14. [14]

      Liu W J, Wang X F, Yu H G, Yu J G. Direct Photoinduced Synthesis of Amorphous CoMoSx Cocatalyst and Its Improved Photocatalytic H2-Evolution Activity of CdS[J]. ACS Sustainable Chem. Eng., 2018,6:12436-12445. doi: 10.1021/acssuschemeng.8b02971

    15. [15]

      Xu J, Mao M, Yu H. Functionalization of Sheet Structure Co-Mo-S with Ni(OH)2 for Efficient Photocatalytic Hydrogen Evolution[J]. Res. Chem. Intermed., 2020,46:1823-1840. doi: 10.1007/s11164-019-04065-y

    16. [16]

      Palencia-Ruiz S, Laurenti D, Uzio D, Legens C, Afanasiev P. Facile Ambient Pressure Propylene Carbonate Solution Synthesis of Highly Divided CoMoS Solids[J]. Mater. Lett., 2020,277128296. doi: 10.1016/j.matlet.2020.128296

    17. [17]

      Peng C, Guo R, Feng X, Fang X C. Tailoring the Structure of Co-Momesoporous γ-Al2O3 Catalysts by Adding Multi-hydroxyl Compound a 3000 Kt/a Industrial-Scale Diesel Ultra-Deep Hydrodesulfurization Study[J]. Chem. Eng. J., 2019,377119706. doi: 10.1016/j.cej.2018.08.092

    18. [18]

      Li P, Zhuang Z H, Du C, Xiang D, Zheng F Q, Zhang Z W, Fang Z W, Guo J H, Zhu S Y, Chen W. Insights into the Mo-Doping Effect on the Electrocatalytic Performance of Hierarchical CoxMoyS Nanosheet Arrays for Hydrogen Generation and Urea Oxidation[J]. ACS Appl. Mater. Interfaces, 2020,12:40194-40203. doi: 10.1021/acsami.0c06716

    19. [19]

      Sharifvaghefi S, Zheng Y. Dispersed Ni and Co Promoted MoS2 Catalysts with Magnetic Greigite as a Core: Performance and Stability in Hydrodesulfurization[J]. ChemistrySelect, 2017,2:4678-4685. doi: 10.1002/slct.201700851

    20. [20]

      Nethravathi C, Prabhu J, Lakshmipriya S, Rajamathi M. Magnetic Co-Doped MoS2 Nanosheets for Efficient Catalysis of Nitroarene Reduction[J]. ACS Omega, 2017,2:5891-5897. doi: 10.1021/acsomega.7b00848

    21. [21]

      Car R, Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory[J]. Phys. Rev. Lett., 1985,55(22):2471-2474. doi: 10.1103/PhysRevLett.55.2471

    22. [22]

      GAO Q Q, YUAN Q T, SONG X F, YU Y M, GUO J. Theoretical Study on Regulation of Photoelectric Properties of Zinc Porphyrin Dyes with Heterocyclopentadiene as π-Bridge[J]. Chinese J. Inorg. Chem., 2022,38(2):295-303.  

    23. [23]

      DU J B, FENG Z F, ZHANG Q, HAN L J, TANG Y L, LI Q F. Molecular Structure and Electronic Spectrum of MoS2 under External Electric Field[J]. Acta Phys. Sin., 2019,68173101. doi: 10.7498/aps.68.20190781

    24. [24]

      Kargar H, Behjatmanesh-Ardakani R, Torabi V, Kashani M, Chavoshpour-Natanzi Z, Kazemi Z, Mirkhani V, Sahraei A, Tahir M N, Ashfaq M, Munawar K S. Synthesis, Characterization, Crystal Structures, DFT, TD-DFT, Molecular Docking and DNA Binding Studies of Novel Copper(Ⅱ) and Zinc(Ⅱ) Complexes Bearing Halogenated Bidentate N, O-Donor Schiff Base Ligands[J]. Polyhedron, 2021,195114988. doi: 10.1016/j.poly.2020.114988

    25. [25]

      Luo S C, Nie D, Li Z, Sun X Y, Hu L, Liu X Y. Effects of Carboxylic Acid Auxiliary Ligands on the Magnetic Properties of Azido-Cu (Ⅱ) Complexes: A Density Functional Theory Study[J]. Polyhedron, 2020,182114506. doi: 10.1016/j.poly.2020.114506

    26. [26]

      Byskov L S, Hammer B, Nørskov J K, Clausen B S, Topsøe H. Sulfur Bonding in MoS2 and Co-Mo-S Structures[J]. Catal. Lett., 1997,47:177-182. doi: 10.1023/A:1019009105792

    27. [27]

      Liebing S, Martin C, Trepte K, Kortus J. Electronic and Magnetic Properties of ConMom Nanoclusters from Density Functional Calculations (n+m=x and 2 ≤ x ≤ 6 Atoms)[J]. Phys. Rev. B: Condens. Matter, 2015,91155421. doi: 10.1103/PhysRevB.91.155421

    28. [28]

      Lu T, Chen F W. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. J. Comput. Chem., 2012,33:580-592. doi: 10.1002/jcc.22885

    29. [29]

      Zhang J, Lu T. Efficient Evaluation of Electrostatic Potential with Computerized Optimized Code[J]. Phys. Chem. Chem. Phys., 2021,23:20323-20328. doi: 10.1039/D1CP02805G

    30. [30]

      Lu T, Chen F W. Quantitative Analysis of Molecular Surface Based on Improved Marching Tetrahedra Algorithm[J]. J. Mol. Graphics Modell., 2012,38:314-323. doi: 10.1016/j.jmgm.2012.07.004

    31. [31]

      Ranjan P, Chakraborty T. Structure and Optical Properties of (CuAg)n (n=1-6) Nanoalloy Clusters within Density Functional Theory Framework[J]. J. Nanopart. Res., 2020,22:1-11. doi: 10.1007/s11051-019-4718-8

    32. [32]

      Reddy R R, Rama Gopal K, Narasimhulu K, Reddy L S S, Kumar K R, Reddy C V K, Ahmed S N. Correlation between Optical Electronegativity and Refractive Index of Ternary Chalcopyrites, Semiconductors, Insulators, Oxides and Alkali Halides[J]. Opt. Mater., 2008,31:209-212. doi: 10.1016/j.optmat.2008.03.010

    33. [33]

      Reddy R R, Ahammed Y N, Gopal K R, Azeem P A, Rao T V R, Reddy P M. Optical Electronegativity, Bulk Modulus and Electronic Polarizability of Materials[J]. Opt. Mater., 2000,14:355-358. doi: 10.1016/S0925-3467(00)00004-5

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(5)
  • Abstract views(791)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return