Citation: Wei-Wei TIE, Zhao ZHENG, Wei-Wei HE, Cong-Xu ZHU, Hong-Wei YUE, Shuai-Biao QIU. In-Situ Construction of BiOBr/Polypyrrole Composite for Photocatalytic Degradation of Anionic Dyes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1549-1556. doi: 10.11862/CJIC.2022.169 shu

In-Situ Construction of BiOBr/Polypyrrole Composite for Photocatalytic Degradation of Anionic Dyes

  • Corresponding author: Wei-Wei TIE, tieww929@163.com
  • Received Date: 22 March 2022
    Revised Date: 21 June 2022

Figures(13)

  • Thin bismuth bromide oxide (BiOBr) flake was prepared by photochemical reaction under dilute acid con- dition, and a new type of bismuth oxide/polypyrrole (BiOBr/PPy) composite was prepared in-situ through a one-step polymerization reaction of pyrrole dispersed in an aqueous solution containing ammonium persulfate and cetyltri- methylammonium bromide. The scanning electron microscope, transmission electron microscope, X-ray diffraction, Raman spectra, X-ray photoelectron spectra, ultraviolet and visible spectra, and fluorescence spectra were used to characterize the crystal structure, morphology feature, and photoelectric characteristics of the samples. The results showed that PPy was successfully modified onto BiOBr flakes with strong interaction and close contact. Compared with pure BiOBr, BiOBr/PPy composite showed superior visible light absorption efficiency and enhanced photocatalytic degradation activity of methyl orange (MO) dye. By optimizing the combination ratio of PPy and BiOBr, the deg- radation efficiency of MO (30 mg·L-1) by BiOBr/PPy-2 with a ca. 7% mass fraction of BiOBr was 87.3% in 50 min photoreaction, and the cyclic photocatalytic activity was reduced but still higher than that of pure BiOBr and pure PPy (10.4%). These results indicated that the strong interaction and good interface combination between BiOBr and PPy can effectively promote the separation efficiency of photogenerated electrons and holes. The photogenic holes separated and free radicals derived in this reaction played an important role in oxidative degradation of dye.
  • 加载中
    1. [1]

      Zou J P, Wu D D, Luo J M, Xing Q J, Luo X B, Dong W H, Luo S L, Du H M, Suib S L. A Strategy for One-Pot Conversion of Organic Pollutants into Useful Hydrocarbons through Coupling Photodegradation of MB with Photoreduction of CO2[J]. ACS Catal., 2016,6:6861-6867. doi: 10.1021/acscatal.6b01729

    2. [2]

      Jiang X H, Zhang L S, Liu H Y, Wu F Y, Tian L, Liu L L, Zou J P, Luo S L, Chen B B. Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2020,59:23112-23116. doi: 10.1002/anie.202011495

    3. [3]

      Tie W W, Du Z Y, Yue H W, Bhattacharyya B B, Zheng Z, He W W, Lee S H. Self-Assembly of Carbon nanotube/Graphitic-like Flake/ BiOBr Nanocomposite with 1D/2D/3D Heterojunctions for Enhanced Photocatalytic Activity[J]. J. Colloid Interface Sci., 2020,579:862-871. doi: 10.1016/j.jcis.2020.06.088

    4. [4]

      Zhang L S, Jiang X H, Zhong Z A, Tian L, Sun Q, Cui Y T, Lu X, Zou J P, Luo S L. Carbon Nitride Supported High-Loading Fe Single Atom Catalyst for Activation of Peroxymonosulfate to Generate 1O2 with 100% Selectivity[J]. Angew. Chem. Int. Ed., 2021,60:21751-21755. doi: 10.1002/anie.202109488

    5. [5]

      Long D, Tu Y P, Chai Y Q, Yuan R. Photoelectrochemical Assay Based on SnO2/BiOBr p-n Heterojunction for Ultrasensitive DNA Detection[J]. Anal. Chem., 2021,93:12995-13000. doi: 10.1021/acs.analchem.1c02745

    6. [6]

      Zhu J Y, Li Y P, Wang X J, Zhao J, Wu Y S, Li F T. Simultaneous Phosphorylation and Bi Modification of BiOBr for Promoting Photocatalytic CO2 Reduction[J]. ACS Sustainable Chem. Eng., 2019,7:14953-14961. doi: 10.1021/acssuschemeng.9b03196

    7. [7]

      Liu Y, Hu Z F, Yu J C. Fe Enhanced Visible-Light-Driven Nitrogen Fixation on BiOBr Nanosheets[J]. Chem. Mater., 2020,32:1488-1494. doi: 10.1021/acs.chemmater.9b04448

    8. [8]

      Tu X M, Luo S L, Chen G X, Li J H. One-Pot Synthesis, Characterization, and Enhanced Photocatalytic Activity of a BiOBr-Graphene Composite[J]. Chem. Eur. J., 2012,18(45):14359-14366. doi: 10.1002/chem.201200892

    9. [9]

      Thomas R T, Rasheed P A, Sandhyarani N. Synthesis of Nanotitania Decorated Few-Layer Graphene for Enhanced Visible Light Driven Photocatalysis[J]. J. Colloid Interface Sci., 2014,428:214-221. doi: 10.1016/j.jcis.2014.04.054

    10. [10]

      Liu X Q, Cai L. Novel Indirect Z-Scheme Photocatalyst of Ag Nanoparticles and Polymer Polypyrrole Co-Modified BiOBr for Photocatalytic Decomposition of Organic Pollutants[J]. Appl. Surf. Sci., 2018,445:242-254. doi: 10.1016/j.apsusc.2018.03.178

    11. [11]

      Liu X Q, Cai L. A Novel Double Z-Scheme BiOBr-GO-Polyaniline Photocatalyst: Study on the Excellent Photocatalytic Performance and Photocatalytic mechanism[J]. Appl. Surf. Sci., 2019,483:875-887. doi: 10.1016/j.apsusc.2019.03.273

    12. [12]

      Zhu M, Zhang L S, Liu S S, Wang D K, Qin Y C, Chen Y, Dai W L, Wang Y H, Xing Q J, Zou J P. Degradation of 4-Nitrophenol by Electrocatalysis and Advanced Oxidation Processes Using Co3O4@C Anode Coupled with Simultaneous CO2 Reduction via SnO2/CC Cathode[J]. Chin. Chem. Lett., 2020,31:1961-1965. doi: 10.1016/j.cclet.2020.01.017

    13. [13]

      Fan Y, Wang L C, Xing Q J, Wang D K, Jiang X H, Li G C, Zheng A M, Ai F R, Zou J P. Functional Groups to Modify g-C3N4 for Improved Photocatalytic Activity of Hydrogen Evolution from Water Splitting[J]. Chin. Chem. Lett., 2020,31:1648-1653. doi: 10.1016/j.cclet.2019.08.020

    14. [14]

      Tie W W, Zheng Z, Xu C, Zheng Z, Bhattacharyya S S, He W W, Lee S H. Facile Synthesis of Carbon Nanotubes Covalently Modified with ZnO Nanorods for Enhanced Photodecomposition of Dyes[J]. J. Colloid Interface Sci., 2019,537:652-660. doi: 10.1016/j.jcis.2018.11.042

    15. [15]

      Omastová M, Mosnáčková K, Fedorko P, Trchoslavá , Stejskal J. Polypyrrole/Silver Composites Prepared by Single-Step Synthesis[J]. Synth. Met., 2013,166:57-62. doi: 10.1016/j.synthmet.2013.01.015

    16. [16]

      Yan B X, Wang Y C, Jiang X Y, Liu K F, Guo L. Flexible Photocatalytic Composite Film of ZnO-Microrods/Polypyrrole[J]. ACS Appl. Mater. Interfaces, 2017,9:29113-29119. doi: 10.1021/acsami.7b08462

    17. [17]

      Harraz F A, Ismail A A, Al-Sayari S A, Al-Hajry A. Novel α-Fe2O3/ Polypyrrole Nanocomposite with Enhanced Photocatalytic Performance[J]. J. Photochem. Photobiol. A, 2015,299:18-24. doi: 10.1016/j.jphotochem.2014.11.001

    18. [18]

      Liu H J, Du C W, Li M, Zhang S S, Bai H K, Yang L, Zhang S Q. One-Pot Hydrothermal Synthesis of SnO2/BiOBr Heterojunction Photocatalysts for the Efficient Degradation of Organic Pollutants under Visible Light[J]. ACS Appl. Mater. Interfaces, 2018,10:28686-28694. doi: 10.1021/acsami.8b09617

    19. [19]

      Chen J Y, Xiao X Y, Wang Y, Lu M, Zeng X Y. Novel AgI/BiOBr/ reduced Graphene Oxide Z-Scheme Photocatalytic System for Efficient Degradation of Tetracycline[J]. J. Alloy. Compd., 2019,800:88-98. doi: 10.1016/j.jallcom.2019.06.004

    20. [20]

      Song N, Fan H Q, Tian H L. Reduced Graphene oxide/ZnO Nanohybrids: Metallic Zn Powder induced One-Step Synthesis for Enhanced Photocurrent and Photocatalytic Response[J]. Appl. Surf. Sci., 2015,353:580-587. doi: 10.1016/j.apsusc.2015.06.062

    21. [21]

      Cao G, Liu Z S, Feng P Z, Zhao Y L, Niu J N. Concave ultrathin BiOBr nanosheets with the Exposed {001} Facets: Room Temperature Synthesis and the Photocatalytic Activity[J]. Mater. Chem. Phys., 2017,199:131-137. doi: 10.1016/j.matchemphys.2017.06.056

    22. [22]

      Ghosh S, Rashmi D, Bera S, Basu R N. Functionalized Conjugated Polymer with Plasmonic Au Nanoalloy for Photocatalytic Hydrogen Generation under Visible-NIR[J]. Int. J. Hydrog. Energy, 2019,44(26):13262-13272. doi: 10.1016/j.ijhydene.2019.03.189

    23. [23]

      Lin Y M, Li D Z, Hu J H, Xiao G C, Wang J X, Li W J, Fu X Z. Highly Efficient Photocatalytic Degradation of Organic Pollutants by PANI-Modified TiO2 Composite[J]. J. Phys. Chem. C, 2012,116:5764-5772. doi: 10.1021/jp211222w

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    10. [10]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(2)
  • Abstract views(574)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return