Citation: Dan SHI, Zhang‐Lü HUANG, Su‐Ding YAN, Juan WANG, Guo‐Hong WANG. Preparation of Bi3TaO7/MXene Nanosheets Heterojunction for Photocatalytic Degradation of Sodium Sulfadiazine[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1487-1498. doi: 10.11862/CJIC.2022.166 shu

Preparation of Bi3TaO7/MXene Nanosheets Heterojunction for Photocatalytic Degradation of Sodium Sulfadiazine

Figures(8)

  • In this work, the Bi3TaO7/Ti3C2 composite photocatalysts were in-situ deposited on the surface of 2D Ti3C2 by electrostatic adsorption and solvothermal treatment using bismuth nitrate pentahydrate and tantalum pentachloride as the Bi and Ta sources, respectively. The effects of 2D Ti3C2 nanosheets on the microstructure of Bi3TaO7/ Ti3C2 were investigated by various physicochemical characterizations. The photocatalytic properties of as‐prepared samples were evaluated by visible light degradation of sodium sulfadiazine (SD‐Na) aqueous solution. The experimental results showed that the photocatalytic performance of the Bi3TaO7/Ti3C2 composites was significantly enhanced. Under the optimal conditions (the mass ratio of Ti3C2 to Bi3TaO7 was 0.02), the obtained BT2 sample exhibited the highest photocatalytic activity for degrading the SD‐Na aqueous solution and the apparent rate constant k value was 2.8 times higher than that of the pure Bi3TaO7 sample. The significant improvement of the Bi3TaO7/ Ti3C2 composite is attributed to the formation of heterojunction structure on the interface between Ti3C2 and Bi3TaO7, resulting in the rapid transfer and separation of photogenerated carriers.
  • 加载中
    1. [1]

      Liu G, Wang G H, Hu Z F, Su Y R, Zhao L. Ag2O Nanoparticles Decorated TiO2 Nanofibers as a p-n Heterojunction for Enhanced Photocatalytic Decomposition of RhB under Visible Light Irradiation[J]. Appl. Surf. Sci., 2019,465:902-910. doi: 10.1016/j.apsusc.2018.09.216

    2. [2]

      Zhang X Y, Li R Y. Variation of Antibiotics in Sludge Pretreatment and Anaerobic Digestion Processes: Degradation and Solid-Liquid Distribution[J]. Bioresour. Technol., 2018,255:266-272. doi: 10.1016/j.biortech.2018.01.100

    3. [3]

      CHANG T, NIU H T, MA R J, WANG H X, LÜ B L. Photocatalytic Degradation of Quasi-Phenothiazine Dyes by Fe Species Modified Urchin-like Nb2O5 Nanospheres[J]. Chinese J. Inorg. Chem., 2021,37(4):717-727.  

    4. [4]

      Jiang J, Wang G H, Shao Y C, Wang J, Zhou S, Su Y R. Step-Scheme ZnO@ZnS Hollow Microspheres for Improved Photocatalytic H2 Production Performance[J]. Chin. J. Catal., 2022,43(2):329-338. doi: 10.1016/S1872-2067(21)63889-5

    5. [5]

      Wang J, Wang G H, Wang X, Wu Y, Su Y R, Tang H. 3D/2D Direct Z-Scheme Heterojunctions of Hierarchical TiO2 Microflowers/g-C3N4 Nanosheets with Enhanced Charge Carrier Separation for Photocatalytic H2 Evolution[J]. Carbon, 2019,149:618-626. doi: 10.1016/j.carbon.2019.04.088

    6. [6]

      WANG L, SHI H, ZHANG H, CHEN Q X, JIN B D, ZHANG H Z. ZnIn2S4/TiO2/Ag Composite Photocatalyst: Preparation and Performance for Hydrogen Production from Water Splitting[J]. Chinese J. Inorg. Chem., 2021,37(9):1571-1578.  

    7. [7]

      Liao Y W, Yang J, Wang G H, Wang J, Wang K, Yan S D. Hierarchical Porous NiO as a Noble-Metal-Free Cocatalyst for Enhanced Photocatalytic H2 Production of Nitrogen-Deficient g-C3N4[J]. Rare Met., 2022,41(2):396-405. doi: 10.1007/s12598-021-01784-3

    8. [8]

      MEI Z H, WANG G H, YAN S D, WANG J. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution[J]. Acta Phys.-Chim. Sin., 2021,37(6)2009097.  

    9. [9]

      Wang K, Wang H K, Cheng Q, Gao C Y, Wang G H, Wu X Y. Molecular-Functionalized Engineering of Porous Carbon Nitride Nanosheets for Wide-Spectrum Responsive Solar Fuel Generation[J]. J. Colloid Interface Sci., 2022,607:1061-1070. doi: 10.1016/j.jcis.2021.09.034

    10. [10]

      Wang F, Wang T T, Lang J Y, Su Y G, Wang X J. Improved Photocatalytic Activity and Durability of AgTaO3/AgBr Heterojunction: The Relevance of Phase and Electronic Structure[J]. J. Mol. Catal. A: Chem., 2017,426:52-59. doi: 10.1016/j.molcata.2016.11.001

    11. [11]

      Luo B F, Xu D B, Li D, Wu G L, Wu M M, Shi W D, Chen M. Fabrication of a Ag/Bi3TaO7 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity for Degradation of Tetracycline[J]. ACS Appl. Mater. Interfaces, 2015,7(31):17061-17069. doi: 10.1021/acsami.5b03535

    12. [12]

      Ullah R, Sun H Q, Wang S B, Ang H M, Tadé M O. Wet-Chemical Synthesis of InTaO4 for Photocatalytic Decomposition of Organic Contaminants in Air and Water with UV-Vis Light[J]. Ind. Eng. Chem. Res., 2012,51(4):1563-1569. doi: 10.1021/ie200544z

    13. [13]

      Luo B, Chen M, Zhang Z Y, Xu J, Li D, Xu D B, Shi W D. Highly Efficient Visible-Light-Driven Photocatalytic Degradation of Tetracycline by a Z-Scheme g-C3N4/Bi3TaO7 Nanocomposite Photocatalyst[J]. Dalton Trans., 2017,46(26):8431-8438. doi: 10.1039/C7DT01250K

    14. [14]

      Luo B F, Chen M, Zhang Z Y, Hong Y Z, Lv T T, Shi W D. Characterization and Photocatalytic Activity of Bi3TaO7 Prepared by Hydrothermal Method[J]. J. Solid State Chem., 2017,256:203-212. doi: 10.1016/j.jssc.2017.08.016

    15. [15]

      Wang K, Zhang G K, Li J, Li Y, Wu X Y. 0D/2D Z-Scheme Heterojunctions of Bismuth Tantalate Quantum Dots/Ultrathin g-C3N4 Nanosheets for Highly Efficient Visible Light Photocatalytic Degradation of Antibiotics[J]. ACS Appl. Mater. Interfaces, 2017,9(50):43704-43715. doi: 10.1021/acsami.7b14275

    16. [16]

      Li J M, Li J, Wu C C, Li Z H, Cai L W, Tang H, Zhou Z Z, Wang G H, Wang J, Zhao L, Wang S M. Crystalline Carbon Nitride Anchored on Mxene as an Ordered Schottky Heterojunction Photocatalyst for Enhanced Visible-Light Hydrogen Evolution[J]. Carbon, 2021,179:387-399. doi: 10.1016/j.carbon.2021.04.046

    17. [17]

      Ng V M H, Huang H, Zhou K, Lee P S, Que W X, Xu J Z C, Kong L B. Recent Progress in Layered Transition Metal Carbides and/or Nitrides (Mxenes) and Their Composites: Synthesis and Applications[J]. J. Mater. Chem. A, 2017,5(7):3039-3068. doi: 10.1039/C6TA06772G

    18. [18]

      Lukatskaya M R, Mashtalir O, Ren C E, Dall′Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi A Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide[J]. Science, 2013,341(6153):1502-1505. doi: 10.1126/science.1241488

    19. [19]

      Li R Y, Zhang L B, Shi L, Wang P. Mxene Ti3C2: An Effective 2D Light-to-Heat Conversion Material[J]. ACS Nano, 2017,11(4):3752-3759. doi: 10.1021/acsnano.6b08415

    20. [20]

      Lin H, Wang X G, Yu L D, Chen Y, Shi J L. Two-Dimensional Ultrathin Mxene Ceramic Nanosheets for Photothermal Conversion[J]. Nano Lett., 2017,17(1):384-391. doi: 10.1021/acs.nanolett.6b04339

    21. [21]

      Peng C, Yang X F, Li Y H, Yu H, Wang H J, Peng F. Hybrids of Two-Dimensional Ti3C2 and TiO2 Exposing {001} Facets toward Enhanced Photocatalytic Activity[J]. ACS Appl. Mater. Interfaces, 2016,8(9):6051-6060. doi: 10.1021/acsami.5b11973

    22. [22]

      Cao S W, Shen B J, Tong T, Fu J W, Yu J G. 2D/2D Heterojunction of Ultrathin Mxene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction[J]. Adv. Funct. Mater., 2018,28(21)1800136. doi: 10.1002/adfm.201800136

    23. [23]

      Li Y J, Liu Y Y, Xing D N, Wang J J, Zheng L R, Wang Z Y, Wang P, Zheng Z K, Cheng H F, Dai Y, Huang B B. 2D/2D Heterostructure of Ultrathin BiVO4/Ti3C2 Nanosheets for Photocatalytic Overall Water Splitting[J]. Appl. Catal. B, 2021,285119855. doi: 10.1016/j.apcatb.2020.119855

    24. [24]

      Li J, Zhan G M, Yu Y, Zhang L Z. Superior Visible Light Hydrogen Evolution of Janus Bilayer Junctions via Atomic-Level Charge Flow Steering[J]. Nat. Commun., 2016,7(1)11480. doi: 10.1038/ncomms11480

    25. [25]

      Wang J J, Tang L, Zeng G M, Liu Y N, Zhou Y Y, Deng Y C, Wang J J, Peng B. Plasmonic Bi Metal Deposition and g‐C3N4 Coating on Bi2WO6 Microspheres for Efficient Visible‐Light Photocatalysis[J]. ACS Sustainable Chem. Eng., 2017,5(1):1062-1072. doi: 10.1021/acssuschemeng.6b02351

    26. [26]

      Yu S X, Huang H W, Dong F, Li M, Tian N, Zhang T R, Zhang Y H. Synchronously Achieving Plasmonic Bi Metal Deposition and I‐Doping by Utilizing BiOIO3 as the Self‐Sacrificing Template for High‐Performance Multifunctional Applications[J]. ACS Appl. Mater. Interfaces, 2015,7(50):27925-27933. doi: 10.1021/acsami.5b09994

    27. [27]

      Huang Y K, Kang S F, Yang Y, Qin H F, Ni Z J, Yang S J, Li X. Facile Synthesis of Bi/Bi2WO6 Nanocomposite with Enhanced Photocatalytic Activity under Visible Light[J]. Appl. Catal. B, 2016,196:89-99. doi: 10.1016/j.apcatb.2016.05.022

    28. [28]

      Zhu C Z, Wang Y T, Jiang Z F, Liu A N, Pu Y, Xian Q M, Zou W X, Sun C. Ultrafine Bi3TaO7 Nanodot-Decorated V, N Codoped TiO2 Nanoblocks for Visible-Light Photocatalytic Activity: Interfacial Effect and Mechanism Insight[J]. ACS Appl. Mater. Interfaces, 2019,11(13):13011-13021. doi: 10.1021/acsami.9b00903

    29. [29]

      Zheng X H, Zhang M, Shi X H, Wang G, Zheng L, Yu Y H, Huang A P, Chu P K, Gao H, Ren W, Di Z F, Wang X. Fluorinated Graphene in Interface Engineering of Ge-Based Nanoelectronics[J]. Adv. Funct. Mater., 2015,25(12):1805-1813. doi: 10.1002/adfm.201404031

    30. [30]

      Liao Y W, Wang G H, Wang J, Wang K, Yan S D, Su Y R. Nitrogen Vacancy Induced In Situ g‐C3N4 p‐n Homojunction for Boosting Visible Light-Driven Hydrogen Evolution[J]. J. Colloid Interface Sci., 2021,587:110-120. doi: 10.1016/j.jcis.2020.12.009

    31. [31]

      Ran J R, Gao G P, Li F T, Ma T Y, Du A J, Qiao S Z. Ti3C2 Mxene Co-Catalyst on Metal Sulfide Photo-Absorbers for Enhanced VisibleLight Photocatalytic Hydrogen Production[J]. Nat. Commun., 2017,8(1)13907. doi: 10.1038/ncomms13907

    32. [32]

      Hu X C, Wang G H, Wang J, Hu Z F, Su Y R. Step-Scheme NiO/ BiOI Heterojunction Photocatalyst for Rhodamine Photodegradation[J]. Appl. Surf. Sci., 2020,511145499. doi: 10.1016/j.apsusc.2020.145499

    33. [33]

      Lu L Y, Wang G H, Xiong Z W, Hu Z F, Liao Y W, Wang J, Li J. Enhanced Photocatalytic Activity under Visible Light by the Synergistic Effects of Plasmonics and Ti3+‐Doping at the Ag/TiO2-x Heterojunction[J]. Ceram. Int., 2020,46(8):10667-10677. doi: 10.1016/j.ceramint.2020.01.073

    34. [34]

      Wan Z, Zhang G K, Wu X Y, Yin S. Novel Visible‐Light‐Driven ZScheme Bi12GeO20/G‐C3N4 Photocatalyst: Oxygen‐Induced Pathway of Organic Pollutants Degradation and Proton Assisted Electron Transfer Mechanism of Cr(Ⅵ) Reduction[J]. Appl. Catal. B, 2017,207176.

    35. [35]

      Halim J, Cook K M, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum M W. X-ray Photoelectron Spectroscopy of Select Multi-layered Transition Metal Carbides (Mxenes)[J]. Appl. Surf. Sci., 2016,362:406-417. doi: 10.1016/j.apsusc.2015.11.089

    36. [36]

      Wang C Y, Zhang H, Li F, Zhu L Y. Degradation and Mineralization of Bisphenol A by Mesoporous Bi2WO6 under Simulated Solar Light Irradiation[J]. Environ. Sci. Technol., 2010,44(17):6843-6848. doi: 10.1021/es101890w

    37. [37]

      Xu D B, Chen M, Song S Y, Jiang D L, Fan W Q, Shi W D. The Synthesis of a Novel Ag‐Natao3 Hybrid with Plasmonic Photocatalytic Activity under Visible‐Light[J]. CrystEngComm, 2014,16(7):1384-1388. doi: 10.1039/c3ce41919c

    38. [38]

      Yan T, Zheng F F, Yu Y F, Qin S B, Liu H, Wang J Y, Yu D H. Formation Mechanism of Black LiTaO3 Single Crystals through Chemical Reduction[J]. J. Appl. Crystallogr., 2011,44(1):158-162. doi: 10.1107/S0021889810052520

    39. [39]

      Zhu M S, Sun Z C, Fujitsuka M, Majima T. Z-Scheme Photocatalytic Water Splitting on a 2D Heterostructure of Black Phosphorus/ Bismuth Vanadate Using Visible Light[J]. Angew. Chem. Int. Ed., 2018,57(8):2160-2164. doi: 10.1002/anie.201711357

    40. [40]

      Zhao X X, Feng J R, Liu J W, Lu J, Shi W, Yang G M, Wang G C, Feng P Y, Cheng P. Metal-Organic Framework-Derived ZnO/ZnS Heteronanostructures for Efficient Visible-Light-Driven Photocatalytic Hydrogen Production[J]. Adv. Sci., 2018,5(4)1700590. doi: 10.1002/advs.201700590

    41. [41]

      Lin F, Zhou S, Wang G H, Wang J, Gao T Y, Su Y R, Wong C P. Electrostatic Self-Assembly Combined with Microwave Hydrothermal Strategy: Construction of 1D/1D Carbon Nanofibers/Crystalline g-C3N4 Heterojunction for Boosting Photocatalytic Hydrogen Production[J]. Nano Energy, 2022,99107432. doi: 10.1016/j.nanoen.2022.107432

    42. [42]

      Rahman M Z, Tapping P C, Kee T W, Smernik R, Spooner N, Moffatt J, Tang Y H, Davey K, Qiao S Z. A Benchmark Quantum Yield for Water Photoreduction on Amorphous Carbon Nitride[J]. Adv. Funct. Mater., 2017,27(39)1702384. doi: 10.1002/adfm.201702384

    43. [43]

      Yang J, Wu X H, Mei Z H, Zhou S, Su Y R, Wang G H. CVD Assisted Synthesis of Macro/Mesoporous TiO2/g-C3N4 S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution[J]. Adv. Sustainable Syst., 20222200056. doi: 10.1002/adsu.202200056

    44. [44]

      Wang Q P, Wang G H, Wang J, Li J M, Wang K, Zhou S, Su Y R. In Situ Hydrothermal Synthesis of ZnS/TiO2 Nanofibers S-Scheme Heterojunction for Enhanced Photocatalytic H2 Evolution[J]. Adv. Sustainable Syst., 20222200027. doi: 10.1002/adsu.202200027

    45. [45]

      Wang J, Wang G H, Cheng B, Yu J G, Fan J J. Sulfur-Doped g‐C3N4/TiO2 SScheme Heterojunction Photocatalyst for Congo Red Photodegradation[J]. Chin. J. Catal., 2021,42(1):56-68. doi: 10.1016/S1872-2067(20)63634-8

    46. [46]

      Ren M, Ao Y H, Wang P F, Wang C. Construction of Silver/GraphiticC3N4/Bismuth Tantalate Z‐Scheme Photocatalyst with Enhanced Visible‐Light‐Driven Performance for Sulfamethoxazole Degradation[J]. Chem. Eng. J., 2019,378122122. doi: 10.1016/j.cej.2019.122122

    47. [47]

      Subramanian V, Wolf E E, Kamat P V. Catalysis with TiO2/Gold Nanocomposites Effect of Metal Particle Size on the Fermi Level Equilibration[J]. J. Am. Chem. Soc., 2004,126(15):4943-4950. doi: 10.1021/ja0315199

  • 加载中
    1. [1]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    2. [2]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    4. [4]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    12. [12]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    13. [13]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    14. [14]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

Metrics
  • PDF Downloads(10)
  • Abstract views(1757)
  • HTML views(301)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return