Citation: Na LI, Cong ZHANG, Ju-Jie REN, Min CUI, Hai-Yan ZHAO, Hong-Yue ZHANG, Shi-Xu CHEN, Hong-Yan HAN, Huan ZHANG. Construction and Properties of the Electrochemical Bisphenol A Sensor Based on Polyoxometalates and Multi-walled Carbon Nanotubes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1633-1642. doi: 10.11862/CJIC.2022.164 shu

Construction and Properties of the Electrochemical Bisphenol A Sensor Based on Polyoxometalates and Multi-walled Carbon Nanotubes

Figures(15)

  • A new inorganic-organic hybrid (H2L)2(HL)2L(PMo12O40)2·2H2O (marked as PMo12) derived from the selfassembling of N-containing ligands L (L=1, 3-bis(1-imidazolyl) propane) and inorganic polyoxometalates (H3PMo12O40) have been hydrothermally synthesized. The compound was characterized by infrared spectroscopy (IR), thermal gravity (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and single-crystal X-ray diffraction. Studies on single-crystal X-ray diffraction reveal that the compound displays 3D structures. Then a bisphenol A (BPA) electrochemical sensor based on PMo12 and multi-walled carbon nanotubes (MWCNTs) has been successfully constructed. The detection limit was 0.5 μmol·L-1 (S/N=3) in a range of 1-20 μmol·L-1, and the sensor had good anti-interference and stability.
  • 加载中
    1. [1]

      Müller A, Kögerler P, Dress A W M. Giant[J]. Metal - Oxide - Based Spheres and Their Topology: From Pentagonal Building Blocks to Keplerates and Unusual Spin Systems. Coord. Chem. Rev., 2001,222:193-218.

    2. [2]

      Hutin M, Rosnes M H, Long D L, Cronin L. Polyoxometalates: Synthesis and Structure-From Building Blocks to Emergent Materials// Reedijk J, Poeppelmeier K. Comprehensive Inorganic Chemistry: Vol. 2. 2nd ed. Oxford: Elsevier, 2013: 241-269

    3. [3]

      Zou C, Zhang Z J, Xuan X, Gong Q H, Li J, Wu C D. A Multifunctional Organic-Inorganic Hybrid Structure Based on Mn-Porphyrin and Polyoxometalate as a Highly Effective Dye Scavenger and Heterogenous Catalyst[J]. J. Am. Chem. Soc., 2012,134(1):87-90. doi: 10.1021/ja209196t

    4. [4]

      Li S J, Peng Q P, Chen X N, Wang R Y, Zhai J X, Hu W H, Ma F J, Zhang J, Liu S X. A Ta/W Mixed Addenda Heteropolyacid with Excellent Acid Catalytic Activity and Proton-Conducting Property[J]. J. Solid State Chem., 2016,243:1-7. doi: 10.1016/j.jssc.2016.08.003

    5. [5]

      Song J, Luo Z, Britt D K, Furukawa H, Yaghi O M, Hardcastle K I, Hill C L. A Multiunit Catalyst with Synergistic Stability and Reactivity: A Polyoxometalate-Metal Organic Framework for Aerobic Decontami- nation[J]. J. Am. Chem. Soc., 2011,133:16839-16846. doi: 10.1021/ja203695h

    6. [6]

      Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N. Efficient Epoxidation of Olefins with ≥99% Selectivity and Use of Hydrogen Peroxide[J]. Science, 2003,300(5621):964-966. doi: 10.1126/science.1083176

    7. [7]

      Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Beugholt C, Das S K, Peters F. Giant Ring - Shaped Building Blocks Linked to Form a Layered Cluster Network with Nanosized Channels: [Mo124Mo28O4293 - O)28H14(H2O)66.5]16-[J]. Chem. Eur. J., 1999,5(5):1496-1502. doi: 10.1002/(SICI)1521-3765(19990503)5:5<1496::AID-CHEM1496>3.0.CO;2-D

    8. [8]

      Falaise C, Khlifi S, Bauduin P, Schmid P, Shepard W, Ivanov A A, Sokolov M N, Shestopalov M A, Abramov P A, Cordier S, Marrot J, Haouas M, Cadot E. "Host in Host"Supramolecular Core-Shell Type Systems Based on Giant Ring - Shaped Polyoxometalates[J]. Angew. Chem. Int. Ed., 2021,60:14146-14153. doi: 10.1002/anie.202102507

    9. [9]

      Dong P F, Li N, Zhao H Y, Cui M, Zhang C, Han H Y, Ren J J. POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol A and Acetaminophen[J]. Chem. Res. Chin. Univ., 2019,35(4):592-597. doi: 10.1007/s40242-019-8370-8

    10. [10]

      Shi S K, Li X, Guo H L, Fan Y H, Li H Y, Dang D B, Bai Y. Ionothermal Synthesis of an Antimonomolybdate Cluster, [Sb8Mo13VIMo5VO66]5-, and Its Catalytic Behavior to the Reduction of Nitrobenzene[J]. Inorg. Chem., 2020,59(16):11213-11217. doi: 10.1021/acs.inorgchem.0c00825

    11. [11]

      Li N, Mu B, Lv L, Huang R D. Assembly of New Polyoxometalate- Templated Metal-Organic Frameworks Based on Flexible Ligands[J]. J. Solid State Chem., 2015,226:88-93. doi: 10.1016/j.jssc.2015.02.005

    12. [12]

      Fernandes D M, Freire C. Carbon Nanomaterial-Phosphomolybdate Composites for Oxidative Electrocatalysis[J]. ChemElectroChem, 2015,2(2):269-279. doi: 10.1002/celc.201402271

    13. [13]

      Wang Y L, Ma Y Y, Zhao Q, Hou L, Han Z G. Polyoxometalate - Based Crystalline Catalytic Materials for Efficient Electrochemical Detection of Cr(Ⅵ)[J]. Sens. Actuators B, 2020,305127469. doi: 10.1016/j.snb.2019.127469

    14. [14]

      Moghadam F H, Taher M A, Karimi-Maleh H. A Sensitive and Fast Approach for Voltammetric Analysis of Bisphenol A as a Toxic Compound in Food Products Using a Pt-SWCNTs/Ionic Liquid Modified Sensor[J]. Food Chem. Toxicol., 2021,152112166. doi: 10.1016/j.fct.2021.112166

    15. [15]

      JIANG X L, ZENG M, HAO Y, XU Z H, WANG J Q, CHEN K, HUANG J. Study of Migration of Bisphenol A to Food Simulants un- der Microwave Radiation[J]. Chinese Journal of Inorganic Analytical, 2013,3(4):69-72.  

    16. [16]

      Yola M L, Atar N. A Novel Voltametric Sensor Based on Gold Nanoparticles Involved in p-Aminothiophenol Functionalized Multiwalled Carbon Nanotubes: Application to the Simultaneous Determination of Quercetin and Rutin[J]. Electrochim. Acta, 2014,119:24-31. doi: 10.1016/j.electacta.2013.12.028

    17. [17]

      Xiao C Y, Wang L H, Zhou Q, Huang X H. Hazards of Bisphenol A (BPA) Exposure: A Systematic Review of Plant Toxicology Studies[J]. J. Hazard. Mater., 2020,384121488. doi: 10.1016/j.jhazmat.2019.121488

    18. [18]

      Dhanjai , Sinha A, Wu L X, Lu X B, Chen J P, Jain R. Advances in Sensing and Biosensing of Bisphenols: A Review[J]. Anal. Chim. Acta, 2018,998:1-27. doi: 10.1016/j.aca.2017.09.048

    19. [19]

      Qin W L, Liu X, Chen H P, Yang J. Amperometric Sensors for Detection of Phenol in Oilfield Wastewater Using Electrochemical Polymerization of Zincon Film[J]. Anal. Methods, 2014,6(15):5734-5740. doi: 10.1039/C3AY41855C

    20. [20]

      Mazzotta E, Malitesta C, Margapoti E. Direct Electrochemical Detection of Bisphenol A at PEDOT-modified Glassy Carbon Electrodes[J]. Anal. Bioanal. Chem., 2013,405(11):3587-3592. doi: 10.1007/s00216-013-6723-6

    21. [21]

      Sun P Y, Wu Y H. An Amperometric Biosensor Based on Human Cytochrome P450 2C9 in Polyacrylamide Hydrogel Films for Bisphenol A Determination[J]. Sens. Actuators B, 2013,178:113-118. doi: 10.1016/j.snb.2012.12.055

    22. [22]

      Huang D H, Huang X Z, Chen J Y, Ye R H, Lin Q, Chen S. An Electrochemical Bisphenol: A Sensor Based on Bimetallic Ce-Zn-MOF[J]. Electrocatalysis, 2021,12(4):456-468. doi: 10.1007/s12678-021-00659-6

    23. [23]

      Zhang R Y, Zhang Y, Deng X L, Sun S G, Li Y C. A Novel Dualsignal Electrochemical Sensor for Bisphenol A Determination by Coupling Nanoporous Gold Leaf and Self-Assembled Cyclodextrin[J]. Electrochim. Acta, 2018,271:417-424. doi: 10.1016/j.electacta.2018.03.113

    24. [24]

      Zhang J, Xu X J, Chen L. An Ultrasensitive Electrochemical Bisphenol A Sensor Based on Hierarchical Ce-Metal-Organic Framework Modified with Cetyltrimethy Lammonium Bromide[J]. Sens. Actuators B, 2018,261:425-433. doi: 10.1016/j.snb.2018.01.170

    25. [25]

      Wu Y Y, Zheng Z Y, Yang J Y, Lin Y J, Zhang X S, Chen Y W, Gao W H. Bisphenol A Electrochemiluminescence Sensor Based on Reduced Graphene Oxide - Bi2ZnS4 Nanocomposite[J]. J. Electroanal. Chem., 2018,817:118-127. doi: 10.1016/j.jelechem.2018.03.064

    26. [26]

      Ndlovu T, Arotiba O A, Sampath S, Krause R W, Mamba B B. An Exfoliated Graphite - Based Bisphenol A Electrochemical Sensor[J]. Sensors, 2012,12:11601-11611. doi: 10.3390/s120911601

    27. [27]

      Rao H B, Liu Y T, Zhong J, Zhang Z Y, Zhao X, Liu X, Jiang Y Y, Zou P, Wang X X, Wang Y Y. Gold Nanoparticle/Chitosan@N, S Codoped Multiwalled Carbon Nanotubes Sensor: Fabrication, Characterization, and Electrochemical Detection of Catechol and Nitrite[J]. ACS Sustainable Chem. Eng., 2017,5:10926-10939. doi: 10.1021/acssuschemeng.7b02840

    28. [28]

      Sheldrick G M. A Short History of SHELX[J]. Acta Crystallogr. Sect. A, 2008,64(1):112-122. doi: 10.1107/S0108767307043930

    29. [29]

      Jiao J, Zuo J W, Pang H J, Tan L C, Chen T, Ma H Y. A Dopamine Electrochemical Sensor Based on Pd-Pt Alloy Nanoparticles Decorated Polyoxometalate and Multiwalled Carbon Nanotubes[J]. J. Electroanal. Chem., 2018,827:103-111. doi: 10.1016/j.jelechem.2018.09.014

    30. [30]

      TENG D, WANG Q, LI N, ZHAO H Y, HUANG R D. Synthesis and Electrochemical Properties of Supramolecular Compounds Based on POMs[J]. Journal of Molecular Science, 2019,35(2):149-150.  

    31. [31]

      Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications[J]. Surf. Technol., 1983,20:91-92. doi: 10.1016/0376-4583(83)90080-8

    32. [32]

      Laviron E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems[J]. J. Electroanal. Chem. Interfacial Electrochem., 1979,101:19-28. doi: 10.1016/S0022-0728(79)80075-3

    33. [33]

      Zhang R Y, Zhang Y, Deng X L, Sun S G, Li Y C. A Novel Dualsignal Electrochemical Sensor for Bisphenol A Determination by Coupling Nanoporous Gold Leaf and Self- Assembled Cyclodextrin[J]. Electrochim. Acta, 2018,271:417-424. doi: 10.1016/j.electacta.2018.03.113

    34. [34]

      Jiang L Y, Santiago I, Foord J. A Comparative Study of Fouling-Free Nano Diamond and Nanocarbon Electrochemical Sensors for Sensitive Bisphenol A Detection[J]. Carbon, 2021,174:390-395. doi: 10.1016/j.carbon.2020.11.073

    35. [35]

      Skunik M, Kulesza P J. Phosphomolybdate -Modified Multi - walled Carbon Nanotubes as Effective Mediating Systems for Electrocatalytic Reduction of Bromate[J]. Anal. Chim. Acta, 2009,631:153-160. doi: 10.1016/j.aca.2008.10.031

    36. [36]

      Zhang L, Li S B, O′Halloran K P, Zhang Z F, Ma H Y, Wang X M, Tan L C, Pang H J. A Highly Sensitive Non - enzymatic Ascorbic Acid Electrochemical Sensor Based on Polyoxometalate/Tris(2, 2′ - bipyridine)ruthenium(Ⅱ)/Chitosan-Palladium Inorganic-Organic Self- Assembled Film[J]. Colloids Surf. A, 2021,641126184.

    37. [37]

      Qin W L, Liu X, Chen H P, Yang J. Amperometric Sensors for Detection of Phenol in Oilfield Wastewater Using Electrochemical Polymerization of Zincon Film[J]. Anal. Methods, 2014,6:5734-5740. doi: 10.1039/C3AY41855C

    38. [38]

      Mazzotta E, Malitesta C, Margapoti E. Direct Electrochemical Detec- tion of Bisphenol A at PEDOT-Modified Glassy Carbon Electrodes[J]. Anal. Bioanal. Chem., 2013,405:3587-3592. doi: 10.1007/s00216-013-6723-6

    39. [39]

      Messaoud N B, Ghica M E, Dridi C, Ali M B, Brett C M A. Electrochemical Sensor Based on Multiwalled Carbon Nanotube and Gold Nanoparticle Modified Electrode for the Sensitive Detection of Bisphenol A[J]. Sens. Actuators B, 2017,253:513-522.

    40. [40]

      DONG B T, FENG Q X, GONG B. Determination of Bisphenol A and Phenol in By-product Sodium Chloride of Synthesis of Polycarbonate by High Performance Liquid Chromatography[J]. Chemical Analysis and Meterage, 2021,7:56-59.  

  • 加载中
    1. [1]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    2. [2]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    3. [3]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    4. [4]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    5. [5]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    6. [6]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    7. [7]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    8. [8]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    9. [9]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    10. [10]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    11. [11]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    12. [12]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    13. [13]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    14. [14]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    15. [15]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    16. [16]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    17. [17]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    18. [18]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    19. [19]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    20. [20]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

Metrics
  • PDF Downloads(4)
  • Abstract views(550)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return