Citation: Qiang XIA, Xiao‐Gang LIAO, Hai‐Li SHEN, Lin ZHENG, Gang LI, Jun SHEN. Co3O4 Doped with Europium as a Performance Enhanced Heterogeneous Catalyst to Activate Peroxymonosulfate for Degradation of Methylene Blue[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1567-1576. doi: 10.11862/CJIC.2022.163 shu

Co3O4 Doped with Europium as a Performance Enhanced Heterogeneous Catalyst to Activate Peroxymonosulfate for Degradation of Methylene Blue

  • Corresponding author: Gang LI, ligang2015@cqut.edu.cn
  • Received Date: 1 April 2022
    Revised Date: 8 June 2022

Figures(7)

  • Employing Co(NO3)2 and Eu(NO3)3 as raw materials, a series of porous Co/Eu bimetallic ‐oxide catalysts were synthesized through an oxalate‐pyrolysis method, and their catalytic performances in activating peroxymonosulfate (PMS) for degradation of methylene blue (MB) were evaluated. The results showed that the sample with a Co/Eu molar ratio (nCo/nEu) of 9 (Co9Eu1) exhibited the most excellent catalytic property towards PMS decomposition for MB removal. The degradation ratio of MB was 86.66% in the system of Co9Eu1/PMS, while it was only 52.62% for the counterpart, under the reaction conditions: catalyst addition of 0.10 g·L-1, PMS concentration of 0.6 mmol·L-1, and a reaction temperature of 25 ℃. The outstanding catalytic performance of Co9Eu1 is attributed to the electron ‐ deficient property of Eu3+, which can enhance the polarization of PMS adsorbed on the surface of the catalyst and then make PMS easier to be activated by the primary catalytic component of Co3O4. Meanwhile, it is found that both C2O42- and HCO3- anions have obvious inhibitory effects on the degradation efficiency of MB in the Co9Eu1/PMS reaction system. In addition, quenching experiments and electron paramagnetic resonance spectroscopies (EPR) identify that reactive oxygen species (SO4-·, ·OH and ·O2-) and non‐radical reactive oxygen species (1O2) both exist in the reaction system. Among them, SO4-· plays a key role in MB oxidative degradation process. Furthermore, no significant changes in catalytic performance in four consecutive cycles was observed.
  • 加载中
    1. [1]

      Ghanbari F, Moradi M. Application of Peroxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review[J]. Chem. Eng. J., 2017,310:41-62. doi: 10.1016/j.cej.2016.10.064

    2. [2]

      Kohantorabi M, Moussavi G, Giannakis S. A Review of the Innovations in Metal ‐ and Carbon ‐ Based Catalysts Explored for Heterogeneous Peroxymonosulfate (PMS) Activation, with Focus on Radical vs. Non ‐ radical Degradation Pathways of Organic Contaminants[J]. Chem. Eng. J., 2021,411127957. doi: 10.1016/j.cej.2020.127957

    3. [3]

      Lyu C, Li Y C, Fang C, Feng W, Sun W T, Zhang Q H. Enhanced Peroxymonosulfate Activation by NixCo1-xOOH for Efficient Catalytic Oxidation of Organic Pollutants[J]. Chem. Res. Chin. Univ., 2019,35:440-448. doi: 10.1007/s40242-019-9025-5

    4. [4]

      Zheng H, Bao J G, Huang Y, Xiang L J, Faheem , Ren B X, Du J K, Nadagouda M N, Dionysiou D D. Efficient Degradation of Atrazine with Porous Sulfurized Fe2O3 as Catalyst for Peroxymonosulfate Activation[J]. Appl. Catal. B, 2019,259118056. doi: 10.1016/j.apcatb.2019.118056

    5. [5]

      Gao Y, Zhu W H, Liu J W, Lin P, Zhang J F, Huang T L, Liu K Q. Mesoporous Sulfur ‐ Doped CoFe2O4 as a New Fenton Catalyst for the Highly Efficient Pollutants Removal[J]. Appl. Catal. B, 2021,295120273. doi: 10.1016/j.apcatb.2021.120273

    6. [6]

      Tian X K, Tian C, Nie Y L, Dai C, Yang C, Tian N, Zhou Z X, Li Y, Wang Y X. Controlled Synthesis of Dandelion ‐ like NiCo2O 4 Microspheres and Their Catalytic Performance for Peroxymonosulfate Activation in Humic Acid Degradation[J]. Chem. Eng. J., 2018,331:144-151. doi: 10.1016/j.cej.2017.08.115

    7. [7]

      Chen S, Liu X D, Gao S Y, Chen Y C, Rao L J, Yao Y Y, Wu Z W. CuCo2O4 Supported on Activated Carbon as a Novel Heterogeneous Catalyst with Enhanced Peroxymonosulfate Activity for Efficient Removal of Organic Pollutants[J]. Environ. Res., 2020,183109245. doi: 10.1016/j.envres.2020.109245

    8. [8]

      Wang J Q, Jiang Y, Gao C Y, Li Y B, Wu X Y. Synergistic Effect of Bimetal in Three ‐ Dimensional Hierarchical MnCo2O4 for High Efficiency of Photoinduced Fenton ‐ like Reaction[J]. Surf. Interfaces, 2021,27101482. doi: 10.1016/j.surfin.2021.101482

    9. [9]

      Qin Q D, Gao X, Wu X, Liu Y H. NaBH4 ‐ Treated Cobalt ‐ Doped g‐C3N 4 for Enhanced Activation of Peroxymonosulfate[J]. Mater. Lett., 2019,256126623. doi: 10.1016/j.matlet.2019.126623

    10. [10]

      Zhang Q Y, Sun X Q, Dang Y, Zhu J J, Zhao Y, Xu X X, Zhou Y Z. A Novel Electrochemically Enhanced Homogeneous PMS‐Heterogeneous CoFe2O4 Synergistic Catalysis for the Efficient Removal of Levofloxacin[J]. J. Hazard. Mater., 2022,424127651. doi: 10.1016/j.jhazmat.2021.127651

    11. [11]

      LIU L Y, SUN Z R, YE W B, TAN W. Degradation of Acid Red B with Co3O4 Activated Peroxymonosulfate with Ultrasound Irradiation[J]. Chemical Industry and Engineering Progress, 2016,302(11):3663-3668.  

    12. [12]

      WU G R, LIU X Y, WANG D J, WANG S J, DONG P, ZHAO C C. Degradation of Rhodamine B with MnO2 Activated Peroxymonosulfate with Ultrasound Irradiation[J]. Applied Chemical Industry, 2018,316(6):1109-1113. doi: 10.3969/j.issn.1671-3206.2018.06.009

    13. [13]

      Sang W J, Li Z X, Huang M J, Wu X H, Li D Y, Mei L J, Cui J Q. Enhanced Transition Metal Oxide Based Peroxymonosulfate Activation by Hydroxylamine for the Degradation of Sulfamethoxazole[J]. Chem. Eng. J., 2020,383123057. doi: 10.1016/j.cej.2019.123057

    14. [14]

      Shi X D, Li Y T, Zhang Z, Sun L, Peng Y Z. Enhancement of Ciprofloxacin Degradation in the Fe /Peroxymonosulfate System by Protocatechuic Acid over a Wide Initial pH Range[J]. Chem. Eng. J., 2019,372:1113-1121.

    15. [15]

      Wang Y, Wu Y, Yu Y F, Pan T, Li D T, Lambropoulou D, Yang X. Natural Polyphenols Enhanced the Cu /peroxymonosulfate (PMS) Oxidation: The Contribution of Cu and HO·[J]. Water Res., 2020,186116326. doi: 10.1016/j.watres.2020.116326

    16. [16]

      DONG Y J. Efficiency and Mechanism of Organic Chelant‑Modified Iron‑Based Nanoparticles in Activation of Peroxymonosulfate. Nanjing: Southeast University, 2019: 39‐66

    17. [17]

      Xu A H, Wei Y, Zou Q C, Zhang W Y, Jin Y Z, Wang Z Y, Yang L Z, Li X X. The Effects of Nonredox Metal Ions on the Activation of Peroxymonosulfate for Organic Pollutants Degradation in Aqueous Solution with Cobalt Based Catalysts: A New Mechanism Investigation[J]. J. Hazard. Mater., 2020,382121081. doi: 10.1016/j.jhazmat.2019.121081

    18. [18]

      Li X N, Rykov A I, Zhang B, Zhang Y J, Wang J H. Graphene Encapsulated FexCoy Nanocages Derived from Metal‐Organic Frameworks as Efficient Activators for Peroxymonosulfate[J]. Catal. Sci. Technol., 2016,6(20):7486-7494. doi: 10.1039/C6CY01479H

    19. [19]

      Oh W D, Lua S K, Dong Z L, Lim T T. High Surface Area DPA ‐ hematite for Efficient Detoxification of Bisphenol A via Peroxymonosulfate Activation[J]. J. Mater. Chem. A, 2014,2(38):15836-15845. doi: 10.1039/C4TA02758B

    20. [20]

      Wacławek S, Grübel K, Černík M. Simple Spectrophotometric Determination of Monopersulfate[J]. Spectrochim. Acta Part A, 2015,149:928-933. doi: 10.1016/j.saa.2015.05.029

    21. [21]

      Wang J L, Wang S Z. Effect of Inorganic Anions on the Performance of Advanced Oxidation Processes for Degradation of Organic Contaminants[J]. Chem. Eng. J., 2021,411128392. doi: 10.1016/j.cej.2020.128392

    22. [22]

      Gong Y, Zhao X, Zhang H, Yang B, Xiao K, Guo T, Zhang J J, Shao H X, Wang Y B, Yu G. MOF‐Derived Nitrogen Doped Carbon Modified g‐C3N4 Heterostructure Composite with Enhanced Photocatalytic Activity for Bisphenol A Degradation with Peroxymonosulfate under Visible Light Irradiation[J]. Appl. Catal. B, 2018,233:35-45. doi: 10.1016/j.apcatb.2018.03.077

    23. [23]

      Yao Y J, Cai Y M, Wu G D, Wei F Y, Li X Y, Chen H, Wang S B. Sulfate Radicals Induced from Peroxymonosulfate by Cobalt Manganese Oxides (CoxMn3-xO4) for Fenton ‐ like Reaction in Water[J]. J. Hazard. Mater., 2015,296:128-137.

    24. [24]

      Gao H Y, Huang C H, Mao L, Shao B, Shao J, Yan Z Y, Tang M, Zhu B Z. First Direct and Unequivocal Electron Spin Resonance Spin‐Trapping Evidence for pH‐Dependent Production of Hydroxyl Radicals from Sulfate Radical[J]. Environ. Sci. Technol., 2020,54:14046-14056.

    25. [25]

      Shao S, Li X S, Gong Z M, Fan B, Hu J H, Peng J B, Lu K, Gao S X. A New Insight into the Mechanism in Fe3O4@CuO/PMS System with Low Oxidant Dosage[J]. Chem. Eng. J., 2022,438135474.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    10. [10]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    11. [11]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    12. [12]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    13. [13]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(5)
  • Abstract views(666)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return