Citation: Bai-Tong NIU, Wang-Nan XIA, Zhao-Qin LAI, Hong-Xu GUO, Zhang-Xu CHEN. Solvent-Controlled Morphology of Ni-BTC and Ni-BDC Metal-Organic Frameworks for Supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1643-1654. doi: 10.11862/CJIC.2022.160 shu

Solvent-Controlled Morphology of Ni-BTC and Ni-BDC Metal-Organic Frameworks for Supercapacitors

  • Corresponding author: Hong-Xu GUO, guohx@mnnu.edu.cn
  • Received Date: 7 March 2022
    Revised Date: 23 April 2022

Figures(13)

  • The performance of energy storage materials is substantially dependent on their nanostructures. Herein, Ni-1, 3, 5-benzenetricarboxylate (Ni-BTC) and Ni-1, 4-benzoate (Ni-BDC) metal-organic frameworks with different morphologies were controllably synthesized using a facile solvothermal method by simply adjusting the solvent, including Ni-BTC blocks, nanospheres, and double-pyramid structures and Ni-BDC nanosheets, nanoflowers and blocks structures, and their electrochemical performance as supercapacitors was thoroughly investigated. Moreover, our study showed that the supercapacitor performance of the electrode materials obtained for Ni-BTC and Ni-BDC electrodes in pure N, N-dimethylformamide (DMF) solvent was better than those prepared with pure ethanol (EtOH) and DMF/EtOH (50:50, V/V) as solvent.
  • 加载中
    1. [1]

      Liang X Q, Chen M H, Zhu H K, Zhu H, Cui X H, Yan J X, Chen Q J, Xia X H, Liu Q. Unveiling the Solid-Solution Charge Storage Mechanism in 1T Vanadium Disulfide Nanoarray Cathodes[J]. J. Mater. Chem. A, 2020,8:9068-9076. doi: 10.1039/D0TA02922J

    2. [2]

      Wang J, Rao M M, Ye C C, Qiu Y C, Su W J, Zheng S R, Fan J, Cai S L, Zhang W G. Cu-MOF Derived Cu-C Nanocomposites towards High Performance Electrochemical Supercapacitors[J]. RSC Adv., 2020,10:4621-4629. doi: 10.1039/C9RA09738D

    3. [3]

      Yang J, Xiong P X, Zheng C, Qiu H Y, Wei M D. Metal-Organic Frameworks: A New Promising Class of Materials for a High Performance Supercapacitor Electrode[J]. J. Mater. Chem. A, 2014,2:16640-16644. doi: 10.1039/C4TA04140B

    4. [4]

      Chen H Y, Huo Y Q, Cai K Z, Teng Y. Controllable Preparation and Capacitance Performance of Bimetal Co/Ni-MOF[J]. Synth. Met., 2021,276116761. doi: 10.1016/j.synthmet.2021.116761

    5. [5]

      Wang K B, Wang Z K, Liu J D, Li C, Mao F F, Wu H, Zhang Q C. Enhancing the Performance of a Battery-Supercapacitor Hybrid Energy Device through Narrowing the Capacitance Difference between Two Electrodes via the Utilization of 2D MOF-Nanosheetderived Ni@Nitrogen-Doped-Varbon Core-Shell Rings as Both Negative and Positive Electrodes[J]. ACS Appl. Mater. Interfaces, 2020,12:47482-47489. doi: 10.1021/acsami.0c12830

    6. [6]

      Wang K B, Li Q Q, Ren Z J, Li C, Chu Y, Wang Z K, Zhang M D, Wu H, Zhang Q C. 2D Metal-Organic Frameworks (MOFs) for High-Performance Batcap Hybrid Devices[J]. Small, 2020,162001987. doi: 10.1002/smll.202001987

    7. [7]

      Wang K B, Wang S R, Liu J D, Guo Y X, Mao F F, Wu H, Zhang Q C. Fe-Based Coordination Polymers as Battery-Type Electrodes in Semisolid-State Battery-Supercapacitor Hybrid Devices[J]. ACS Appl. Mater. Interfaces, 2021,13:15315-15323. doi: 10.1021/acsami.1c01339

    8. [8]

      Guo Y X, Wang K B, Hong Y, Wu H, Zhang Q C. Recent Progress on Pristine Two-Dimensional Metal-Organic Frameworks as Active Components in Supercapacitors[J]. Dalton Trans., 2021,50:11331-11346. doi: 10.1039/D1DT01729B

    9. [9]

      RONG H R, WANG X M, MA Y W, GAO G X, SU H Q, LAI L F, LIU Q. Three-Dimensional Cobalt-Based MOF[KCo7(OH)3(ip)6(H2O)4]·12H2O as a High-Capacity Electrode Materials for Supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(2):206-212.  

    10. [10]

      Zhu D D, Qiao M, Liu J L, Tao T, Guo C X. Engineering Pristine 2D Metal-Organic Framework Nanosheets for Electrocatalysis[J]. J. Mater. Chem. A, 2020,8:8143-8170. doi: 10.1039/D0TA03138K

    11. [11]

      Zhang W J, Guo X L, Wang Y X, Zheng Y M, Zhao J J, Xie H, Zhang Z, Zhao Y H. Self-Assembly of Ni-Doped Co-MOF Spherical Shell Electrode for a High-Performance Supercapacitor[J]. Energy Fuels, 2022,36:1716-1725. doi: 10.1021/acs.energyfuels.1c03624

    12. [12]

      Niu B T, Yao B Y, Zhu M H, Guo H X, Ying S M, Chen Z X. Carbon Paste Electrode Modified with Fern Leave-like MIL-47(As) for Electrochemical Simultaneous Detection of Pb(Ⅱ), Cu(Ⅱ) and Hg(Ⅱ)[J]. J. Electroanal. Chem., 2021,886115121. doi: 10.1016/j.jelechem.2021.115121

    13. [13]

      Wang K B, Guo Y X, Zhang Q C. Metal-Organic Frameworks Constructed from Iron-Series Elements for Supercapacitors[J]. Small Struct., 20212100115.

    14. [14]

      RONG H R, WANG X M, WEI Y H, CHEN X J, LAI L F, LIU Q. A Layered Co-MOF Based Electrode Material of Supercapacitor with High-Capacity[J]. Chinese J. Inorg. Chem., 2021,37(12):2227-2234. doi: 10.11862/CJIC.2021.230 

    15. [15]

      Niu B T, Zhu M H, Guo H X, Ying S M, Huang X G. Simple Fabrication of a Hexagonal Prisms with Hexagonal Pyramid Tips V2O5@MOF (V, Co) and Its Application as Electrochemical Sensor for Pb2+[J]. Inorg. Chem. Commun., 2021,133108966. doi: 10.1016/j.inoche.2021.108966

    16. [16]

      Ramachandran R, Zhao C H, Luo D, Wang K, Wang F. MorphologyDependent Electrochemical Properties of Cobalt-Based Metal Organic Frameworks for Supercapacitor Electrode Materials[J]. Electrochim. Acta, 2018,267:170-180. doi: 10.1016/j.electacta.2018.02.074

    17. [17]

      Lee D H, Kim S, Hyun M Y, Hong J Y, Huh S, Kim C, Lee S J. Controlled Growth of Narrowly Dispersed Nanosize Hexagonal MOF Rods from Mn(Ⅲ)-Porphyrin and In(NO3)3 and Their Application in Olefin Oxidation[J]. Chem. Commun., 2012,48:5512-5514. doi: 10.1039/c2cc31075a

    18. [18]

      Sun S Y, Huang M J, Wang P C, Lu M. Controllable Hydrothermal Synthesis of Ni/Co MOF as Hybrid Advanced Electrode Materials for Supercapacitor[J]. J. Electrochem. Soc., 2019,166(10):A1799-A1805. doi: 10.1149/2.0291910jes

    19. [19]

      Guo H L, Zhu Y Z, Wang S, Su S Q, Zhou L, Zhang H J. Combining Coordination Modulation with Acid-Base Adjustment for the Control over Size of Metal-Organic Frameworks[J]. Chem. Mater., 2012,24:444-450. doi: 10.1021/cm202593h

    20. [20]

      Sun J, Yu X B, Zhao S H, Chen H M, Tao K, Han L. Solvent-Controlled Morphology of Amino-Functionalized Bimetal Metal-Organic Frameworks for Asymmetric Supercapacitors[J]. Inorg. Chem., 2020,59:11385-11395. doi: 10.1021/acs.inorgchem.0c01157

    21. [21]

      Tan H Y, Liu H Y, Wang C, Wu J. Simple Preparation, Structure and Conductivity of Nickel(Ⅱ) Benzenetricarboxylate Ni3(BTC)2·12H2O[J]. Chin. J. Struct. Chem., 2014,3:401-406.

    22. [22]

      Gan Q M, He H N, Zhao K M, He Z, Liu S. Morphology-Dependent Electrochemical Performance of Ni-1, 3, 5-Benzenetricarboxylate Metal-Organic Frameworks as an Anode Material for Li-Ion Batteries[J]. J. Colloid Interface Sci., 2018,530:127-136. doi: 10.1016/j.jcis.2018.06.057

    23. [23]

      Tan K, Nijem N, Canepa P, Gong Q, Li J, Thonhauser T, Chabal Y J. Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration[J]. Chem. Mater., 2012,24:3153-3167. doi: 10.1021/cm301427w

    24. [24]

      Zhu Y X, Zhang Z, Cheng J, Guo H, Yang W J. Ni-BTC Metal-Organic Framework Loaded on MCM-41 to Promote Hydrodeoxygenation and Hydrocracking in Jet Biofuel Production[J]. Int. J. Hydrogen Energy, 2021,46:3898-3908. doi: 10.1016/j.ijhydene.2020.10.216

    25. [25]

      Lei H T, Cao X, Liu X Y, Lei J D. Surfactant-Assisted Synthesis of Zn3(BTC)2 (H3BTC=1, 3, 5-Benzenetricarboxylic Acid) Hollow Nanoparticles[J]. Inorg. Chem. Commun., 2018,96:86-89. doi: 10.1016/j.inoche.2018.07.031

    26. [26]

      Su Y P, Chen C, Zhu X G, Zhang Y, Gong W B, Zhang H M, Zhao H J, Wang G Z. Carbon-Embedded Ni Nanocatalysts Derived from MOFs by a Sacrificial Template Method for Efficient Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol[J]. Dalton Trans., 2017,46:6358-6365. doi: 10.1039/C7DT00628D

    27. [27]

      Helal A, Naeem M, Arafat M E, Rahman M M. Europium Doped Ni(BTC) Metal-Organic Framework for Detection of Heteroaromatic Compounds in Mixed Aqueous Media[J]. Mater. Res. Bull., 2022,146111604. doi: 10.1016/j.materresbull.2021.111604

    28. [28]

      Jeong G Y, Singh A K, Kim M G, Gyak K W, Ryu U J, Choi K M, Kim D P. Metal-Organic Framework Patterns and Membranes with Heterogeneous Pores for Flow-Assisted Switchable Separations[J]. Nat. Commun., 2018,93968. doi: 10.1038/s41467-018-06438-0

    29. [29]

      Zhang X F, Chang L, Yang Z J, Shi Y N, Long C, Han J Y, Zhang B H, Qiu X Y, Li G D, Tang Z Y. Facile Synthesis of Ultrathin Metal-Organic Framework Nanosheets for Lewis Acid Catalysis[J]. Nano Res., 2019,12:437-440. doi: 10.1007/s12274-018-2235-1

    30. [30]

      Guo H X, Zheng Z S, Zhang Y H, Lin H B, Xu Q B. Highly Selective Detection of Pb2+ by a Nanoscale Ni-Based Metal-Organic Framework Fabricated through One-Pot Hydrothermal Reaction[J]. Sens. Actuators B, 2017,248:430-436. doi: 10.1016/j.snb.2017.03.147

    31. [31]

      Zheng S S, Li B, Tang Y J, Li Q, Xue H G, Pang H. Ultrathin Nanosheet-Assembled[Ni3(OH)2(PTA)2(H2O)4]·2H2O Hierarchical Flowers for High-Performance Electrocatalysis of Glucose Oxidation Reactions[J]. Nanoscale, 2018,10(27):13270-13276. doi: 10.1039/C8NR02932F

    32. [32]

      Xiao Y, Wei W, Zhang M J, Jiao S, Shi Y C, Ding S J. Facile Surface Properties Engineering of High-Quality Graphene: Toward Advanced Ni-MOF Heterostructures for High-Performance Supercapacitor Electrode[J]. ACS Appl. Energy Mater., 2019,2(3):2169-2177. doi: 10.1021/acsaem.8b02201

    33. [33]

      Yan Y, Gu P, Zheng S S, Zheng M B, Pang H, Xue H G. Facile Synthesis of an Accordion-like Ni-MOF Superstructure for High-Performance Flexible Supercapacitors[J]. J. Mater. Chem. A, 2016,4:19078-19085. doi: 10.1039/C6TA08331E

    34. [34]

      Li C, Zheng C M, Jiang H L, Bai S X, Jia J H. Conductive Flowerlike Ni-PTA-Mn as Cathode for Aqueous Zinc-Ion Batteries[J]. J. Alloy. Compd., 2021,882160587. doi: 10.1016/j.jallcom.2021.160587

    35. [35]

      Zhao S F, Zeng L Z, Cheng G, Yu L, Zeng H Q. Ni/Co-Based Metal-Organic Frameworks as Electrode Material for High Performance Supercapacitors[J]. Chin. Chem. Lett., 2019,30:605-609. doi: 10.1016/j.cclet.2018.10.018

    36. [36]

      Kang L, Sun S X, Kong L B, Lang J W, Luo Y C. Investigating Metal-Organic Framework as a New Pseudo-capacitive Material for Supercapacitors[J]. Chin. Chem. Lett., 2014,25(6):957-961. doi: 10.1016/j.cclet.2014.05.032

    37. [37]

      Liu X X, Shi C D, Zhai C W, Cheng M L, Liu Q, Wang G X. CobaltBased Layered Metal-Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material[J]. ACS Appl. Mater. Interfaces, 2016,8:4585-4591. doi: 10.1021/acsami.5b10781

    38. [38]

      Xie Y B, Zhang Y C. Electrochemical Performance of Carbon Paper Supercapacitor Using Sodium Molybdate Gel Polymer Electrolyte and Nickel Molybdate Electrode[J]. J. Solid State Chem., 2019,23:1911-1927.

    39. [39]

      Cao J Z, Yun J H, Zhang N H, Wei Y M, Yang H, Xu Z L. Bifunctional Ag@Ni-MOF for High Performance Supercapacitor and Glucose Sensor[J]. Synth. Met., 2021,282116931. doi: 10.1016/j.synthmet.2021.116931

    40. [40]

      Wang Z, Dong P, Sun Z X, Sun C, Bu H Y, Han J, Chen S P, Xie G. NH2-Ni-MOF Electrocatalysts with Tunable Size/Morphology for Ultrasensitive C-Reactive Protein Detection via an Aptamer Binding Induced DNA Walker-Antibody Sandwich Assay[J]. J. Mater. Chem. B, 2018,6:2426-2431. doi: 10.1039/C8TB00373D

    41. [41]

      Wu X M, Liu M M, Guo H X, Ying S M, Chen Z X. Polyoxovanadate-Based MOFs Microsphere Constructed from 3-D Discrete Nano-Sheets as Supercapacitor[J]. Chin. J. Struct. Chem., 2021,40(8):994-998.

    42. [42]

      Qu C, Jiao Y, Zhao B, Chen D C, Zou R Q, Walton K S, Liu M L. Nickel-Based Pillared MOFs for High-Performance Supercapacitors: Design, Synthesis and Stability Study[J]. Nano Energy, 2016,26:66-73. doi: 10.1016/j.nanoen.2016.04.003

    43. [43]

      Xuan W L, Ramachandran R, Zhao C H, Wang F. Influence of Synthesis Temperature on Cobalt Metal-Organic Framework (Co-MOF) Formation and Its Electrochemical Performance towards Supercapacitor Electrodes[J]. J. Solid State Electrochem., 2018,22(12):3873-3881. doi: 10.1007/s10008-018-4096-7

    44. [44]

      Yu H N, Xia H C, Zhang J N, He J, Guo S Y, Xu Q. Fabrication of Fe-Doped Co-MOF with Mesoporous Structure for the Optimization of Supercapacitor Performances[J]. Chin. Chem. Lett., 2018,29:834-836. doi: 10.1016/j.cclet.2018.04.008

    45. [45]

      Rahmanifar M S, Hesari H, Noori A, Masoomi M Y, Morsali A, Mousavi M F. A Dual Ni/Co-MOF-Reduced Graphene Oxide Nanocomposite as a High Performance Supercapacitor Electrode Material[J]. Electrochim. Acta, 2018,275:76-86. doi: 10.1016/j.electacta.2018.04.130

    46. [46]

      Gao S W, Sui Y W, Wei F X, Qi J Q, Meng Q K, Ren Y J, He Y Z. Dandelion-like Nickel/Cobalt Metal-Organic Framework Based Electrode Materials for High Performance Supercapacitors[J]. J. Colloid Interface Sci., 2018,531:83-90. doi: 10.1016/j.jcis.2018.07.044

  • 加载中
    1. [1]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    10. [10]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    11. [11]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    12. [12]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    13. [13]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    14. [14]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    17. [17]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    18. [18]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    19. [19]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    20. [20]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

Metrics
  • PDF Downloads(175)
  • Abstract views(1791)
  • HTML views(663)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return