Citation: Xue-Feng WANG, Chong-Yu SHEN, Ji-Liang WU, Xiao-Qiu YE. First-Principles Calculation of H/CO2 Interaction in Plasma: A Density Functional Theory-Based Study[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1470-1476. doi: 10.11862/CJIC.2022.158 shu

First-Principles Calculation of H/CO2 Interaction in Plasma: A Density Functional Theory-Based Study

  • Corresponding author: Xiao-Qiu YE, xiaoqiugood@sina.com
  • Received Date: 14 December 2021
    Revised Date: 23 April 2022

Figures(3)

  • An in-depth understanding of the microscopic mechanism of the reaction of hydrogen isotopes with CO2 under irradiation conditions can provide data support for the optimal design of the deuterium-tritium fuel cycle process for fusion reactors. Based on this, the microscopic reaction mechanism of H2 and CO2 under the condition of plasma discharge was studied by first-principles calculation, and the influences of different temperatures and hydrogen isotope effect on the reaction process were studied. The principal calculation was carried out by the Gaussian 09 software package. The enthalpies and activation energies of these reactions were measured at the level of M06-2X/6-311++G (3d2f, 3p2d). Four initial reaction paths are obtained by using the intrinsic reaction coordinate (IRC) algorithm and finding the transition state of the combined reaction. The thermodynamic easiness of the two pathways to produce CH4 and CH3OH and the influence of different hydrogen isotopes on each reaction were compared and studied. It is found that the spontaneous decay of tritium or the high-energy electrons in the plasma will induce hydrogen isotopes to react with CO2 to form products such as CO, H2O, CH4, and CH3OH; after the high-energy electrons induce the dissociation of CO2, there are four initial reaction paths. Complex reactions can occur on their own, and there are two tendencies to this complex reaction. Raising the reaction temperature has a certain promoting effect on the conversion of CO2 into organic matter (CH4 and CH3OH).
  • 加载中
    1. [1]

      Hassanein A, Sizyuk V. Potential Design Problems for ITER Fusion Device[J]. Sci. Rep., 2021,11(1)2069. doi: 10.1038/s41598-021-81510-2

    2. [2]

      Cristescu I R, Cristescu I, Doerr L, Glugla M, Murdoch D. Tritium Inventories and Tritium Safety Design Principles for the Fuel Cycle of ITER[J]. Nucl. Fusion, 2007,47(7):S458-S463. doi: 10.1088/0029-5515/47/7/S08

    3. [3]

      Glugla M, Lasser R, Dorr L, Murdoch D K, Haange R, Yoshida H. The Inner Deuterium/Tritium Fuel Cycle of ITER[J]. Fusion Eng. Des., 2003,69(1/2/3/4):39-43.

    4. [4]

      Glugla M, Caldwell-Nichols C, Cristescu I R, Doerr L, Hellriegel G, Laesser R, Murdoch D, Schaefer P. Protection of the Primary Circuits and Effect on the Design of the Inner Deuterium/Tritium Fuel Cycle of ITER[J]. Fusion Eng. Des., 2005,75-79:637-643. doi: 10.1016/j.fusengdes.2005.06.047

    5. [5]

      Chen Z, Hu X X, Ye M Y, Wirth B D. Deuterium Transport and Retention Properties of Representative Fusion Blanket Structural Materials[J]. J. Nucl. Mater., 2021,549152904. doi: 10.1016/j.jnucmat.2021.152904

    6. [6]

      Fridman A. Plasma Chemistry. Philadelphia: Drexel University, 2008: 5

    7. [7]

      Bogaerts A, Neyts E, Gijbels R, van der Mullen J. Gas Discharge Plasmas and Their Applications. Spectrochim[J]. Acta Pt. B—Atom. Spectr., 2002,57(4):609-658. doi: 10.1016/S0584-8547(01)00406-2

    8. [8]

      Federici G, Anderl R A, Andrew P, Brooks J N, Causey R A, Coad J P, Cowgill D, Doerner R P, Haasz A A, Janeschitz G, Jacob W, Longhurst G R, Nygren R, Peacock A, Pic M A, Philipps V, Roth J, Skinner C H, Wampler W R. In-Vessel Tritium Retention and Removal in ITER[J]. J. Nucl. Mater., 1999,266:14-29.

    9. [9]

      Song J, Xiong Y, Lang L, Shi Y, Ba J, Jing W, He M. Radiochemical Reaction of DT/T2 and CO under High Pressure[J]. J. Hazard. Mater., 2019,378120720. doi: 10.1016/j.jhazmat.2019.05.113

    10. [10]

      Douglas D L. Tritium-Carbon Monoxide Reaction[J]. J. Chem. Phys., 1955,23(8):1558-1559.

    11. [11]

      O′hira S, Nakamura H, Okuno K, Taylor D J, Sherman R H. Beta-Decay Induced Reaction Studies of Tritium by Laser Raman Spectroscopy[J]. Fusion Technol., 1995,28(3):1239-1243.

    12. [12]

      Styring P, Quadrelli E A, Armstrong K. Carbon Dioxide Utilisation: Closing the Carbon Cycle. Amsterdam: Elsevier, 2014: 9-20

    13. [13]

      Aresta M, Dibenedetto A, Angelini A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2[J]. Chem. Rev., 2014,114(3):1709-1742. doi: 10.1021/cr4002758

    14. [14]

      Centi G, Quadrelli E A, Perathoner S. Catalysis for CO2 Conversion: A Key Technology for Rapid Introduction of Renewable Energy in the Value Chain of Chemical Industries[J]. Energy Environ. Sci., 2013,6(6):1711-1731. doi: 10.1039/c3ee00056g

    15. [15]

      Eliasson B, Kogelschatz U, Xue B, Zhou L M. Hydrogenation of Carbon Dioxide to Methanol with a Discharge-Activated Catalyst[J]. Ind. Eng. Chem. Res., 1998,37(8):3350-3357. doi: 10.1021/ie9709401

    16. [16]

      Hayashi N, Yamakawa T, Baba S. Effect of Additive Gases on Synthesis of Organic Compounds from Carbon Dioxide Using Non-thermal Plasma Produced by Atmospheric Surface Discharges[J]. Vacuum, 2006,80(11/12):1299-1304.

    17. [17]

      Zeng Y, Tu X. Plasma-Catalytic CO2 Hydrogenation at Low Temperatures[J]. IEEE Trans. Plasma Sci., 2016,44(4):405-411. doi: 10.1109/TPS.2015.2504549

    18. [18]

      de Bie C, van Dijk J, Bogaerts A. CO2 Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed[J]. J. Phys. Chem. C, 2016,120(44):25210-25224. doi: 10.1021/acs.jpcc.6b07639

    19. [19]

      Maya L. Plasma-Assisted Reduction of Carbon Dioxide in the Gas Phase[J]. J. Vac. Sci. Technol. A, 2000,18(1):285-287. doi: 10.1116/1.582148

    20. [20]

      de la Fuente J F, Moreno S H, Stankiewicz A I, Stefanidis G D. A New Methodology for the Reduction of Vibrational Kinetics in Nonequilibrium Microwave Plasma: Application to CO2 Dissociation[J]. React. Chem. Eng., 2016,1(5):540-554. doi: 10.1039/C6RE00044D

    21. [21]

      Kano M, Satoh G, Iizuka S. Reforming of Carbon Dioxide to Methane and Methanol by Electric Impulse Low-Pressure Discharge with Hydrogen[J]. Plasma Chem. Plasma Process., 2012,32(2):177-185. doi: 10.1007/s11090-011-9333-0

    22. [22]

      Bogaerts A, Kozák T, van Laer K, Snoeckx R. Plasma-Based Conversion of CO2: Current Status and Future Challenges[J]. Faraday Discuss., 2015:217-232.

    23. [23]

      Corrigan S J. Dissociation of Molecular Hydrogen by Electron Impact[J]. J. Chem. Phys., 1965,43(12):4381-4386. doi: 10.1063/1.1696701

    24. [24]

      SHI C Y, REN L, KONG F A. Chemical Reaction and Energy Transfer between Hot H Atoms and CO2 Molecules[J]. Chinese J. Chem. Phys., 2006,19(6):473-477. doi: 10.3969/j.issn.1674-0068.2006.06.002

    25. [25]

      Zhao Y, Truhlar D G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function[J]. Theor. Chem. Acc., 2008,120(1/2/3):215-241.

    26. [26]

      Zhao Y, Truhlar D G. Density Functionals with Broad Applicability in Chemistry[J]. Acc. Chem. Res., 2008,41(2):157-167. doi: 10.1021/ar700111a

    27. [27]

      Frisch M J, Pople J A, Binkley J S. Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets[J]. J. Chem. Phys., 1984,80(7):3265-3269. doi: 10.1063/1.447079

    28. [28]

      Lu T, Chen Q X. Shermo: A General Code for Calculating Molecular Thermochemistry Properties[J]. Comput. Theor. Chem., 2021,1200113249. doi: 10.1016/j.comptc.2021.113249

    29. [29]

      Lu T. TSTcalculator. http://sobereva.com/310

    30. [30]

      DONG Y Y, WANG Y, ZHANG F Y. Inorganic and Analytical Chemistry. 3rd ed, . Beijing: Science Press 2011: 45

    31. [31]

      Fukui K. The Path of Chemical Reactions—The IRC Approach[J]. Acc. Chem. Res., 1981,14(12):363-368. doi: 10.1021/ar00072a001

    32. [32]

      Jiang Z, Xiao T, Kuznetsov V L, Edwards P P. Turning Carbon Dioxide into Fuel[J]. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 2010,368(1923):3343-3364.

    33. [33]

      Rayne S. Review of the Carbon Dioxide Splitting Patent Literature[J]. Nature Precedings, 2008.

    34. [34]

      Snoeckx R, Bogaerts A. Plasma Technology—A Novel Solution for CO2 Conversion?[J]. Chem. Soc. Rev., 2017,46(19):5805-5863.

    35. [35]

      XIONG Y F, LEI Q H, LIU L, JING W Y. Researches on Irradiation Properties of Deuterium-Tritium Mixed Gases with CO2 in Room Temperature[J]. Nuclear Science and Techniques, 2018,6(3):55-60.

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(8)
  • Abstract views(693)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return