Citation: Ying‐Yuan HU, Rui LÜ, Wen‐Long ZHANG, Jian‐Xin LIU, Rui LI, Cai‐Mei FAN. One⁃Pot Electrochemical Preparation and Performance of BiOCl0.5Br0.5/BiPO4 Double⁃Layer Heterojunction Thin Film Photocatalyst[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1577-1585. doi: 10.11862/CJIC.2022.153 shu

One⁃Pot Electrochemical Preparation and Performance of BiOCl0.5Br0.5/BiPO4 Double⁃Layer Heterojunction Thin Film Photocatalyst

Figures(11)

  • BiOCl0.5Br0.5/BiPO4 double‐layer heterojunction thin film photocatalyst was successfully prepared on Bi plate by one‐pot electrochemical method. The crystal structure, elemental composition and valence, morphology and optical property were characterized. The as‐obtained double‐layer film consisted of BiOCl0.5Br 0.5 solid solution layer at the bottom and BiPO4 nanoparticles layer at the top. The interface internal electric field of BiOCl0.5Br0.5/BiPO4 composite film led the photo‐induced electrons and holes to shift in the opposite direction, thus improving the photocatalytic performance of BiOCl0.5Br0.5/BiPO4 composite film. The results displayed that the photodegradation efficiency of phenol reached 99.97% after 120 min under simulated sunlight irradiation, which was nearly 1.69 times and 1.20 times more than that of BiOCl/BiPO4 and BiOBr/BiPO4 composite films, respectively. Besides, the hole (h+) and hydroxyl radical (·OH) played a crucial role in the photodegradation process of phenol. The improved photocatalytic performance of BiOCl 0.5Br0.5/BiPO4 composite film can be ascribed to the broadened absorbance spectra range and efficient separation of photo‐induced charge carriers.
  • 加载中
    1. [1]

      Wang H J, Li X, Zhao X X, Li C Y, Song X H, Zhang P, Huo P W, Li X. A Review on Heterogeneous Photocatalysis for Environmental Remediation: From Semiconductors to Modification Strategies[J]. Chin. J. Catal., 2022,43(2):178-214. doi: 10.1016/S1872-2067(21)63910-4

    2. [2]

      Wang S C, Wang L Z, Huang W. Bismuth ‐ Based Photocatalysts for Solar Energy Conversion[J]. J. Mater. Chem. A, 2020,8:24307-24352. doi: 10.1039/D0TA09729B

    3. [3]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238:37-38. doi: 10.1038/238037a0

    4. [4]

      Zhu X D, Jhang J H, Zhou C, Dagdeviren O E, Chen Z, Schwarz U D, Altman E I. Using ZnO‐Cr2O3‐ZnO Heterostructures to Characterize Polarization Penetration Depth through Non‐polar Films[J]. Phys. Chem. Chem. Phys., 2017,19:32492-32504. doi: 10.1039/C7CP06059A

    5. [5]

      Liu C T, Wang B J, Han T, Shi D M, Wang G F. Fe Foil‐Guided Fabrication of Uniform Ag@AgX Nanowires for Sensitive Detection of Leukemia DNA[J]. ACS Appl. Mater. Interfaces, 2019,11(5):4820-4825. doi: 10.1021/acsami.8b18700

    6. [6]

      Martin D J, Liu G G, Moniz S J A, Bi Y P, Beale A M, Ye J H, Tang J W. Efficient Visible Driven Photocatalyst, Silver Phosphate: Performance, Understanding and Perspective[J]. Chem. Soc. Rev., 2015,44:7808-7828. doi: 10.1039/C5CS00380F

    7. [7]

      Liao G F, Gong Y, Zhang L, Gao H Y, Yang G J, Fang B Z. Semiconductor Polymeric Graphitic Carbon Nitride Photocatalysts: The"Holy Grail"for the Photocatalytic Hydrogen Evolution Reaction under Visible Light[J]. Energy Environ. Sci., 2019,12:2080-2147. doi: 10.1039/C9EE00717B

    8. [8]

      Chandrasekaran S, Yao L, Deng L B, Bowen C, Zhang Y, Chen S M, Lin Z Q, Peng F, Zhang P X. Recent Advances in Metal Sulfides: From Controlled Fabrication to Electrocatalytic, Photocatalytic and Photoelectrochemical Water Splitting and Beyond[J]. Chem. Soc. Rev., 2019,48:4178-4280. doi: 10.1039/C8CS00664D

    9. [9]

      Jing L Q, Zhou W, Tian G H, Fu H G. Surface Tuning for Oxide‐Based Nanomaterials as Efficient Photocatalysts[J]. Chem. Soc. Rev., 2013,42:9509-9549. doi: 10.1039/c3cs60176e

    10. [10]

      Bhachu D S, Moniz S J A, Sathasivam S, Scanlon D O, Walsh A, Bawaked S M, Mokhtar M, Obaid A Y, Parkin I P, Tang J W, Carmalt C J. Bismuth Oxyhalides: Synthesis, Structure and Photoelectrochemical Activity[J]. Chem. Sci., 2016,7:4832-4841. doi: 10.1039/C6SC00389C

    11. [11]

      Gao M M, Zhu L L, Ong W L, Wang J, Ho G W. Structural Design of TiO2 ‐Based Photocatalyst for H2 Production and Degradation Applications[J]. Catal. Sci. Technol., 2015,5:4703-4726. doi: 10.1039/C5CY00879D

    12. [12]

      Wang C L, Sun Z X, Zheng Y, Hu Y H. Recent Progress in Visible Light Photocatalytic Conversion of Carbon Dioxide[J]. J. Mater. Chem. A, 2019,7:865-887. doi: 10.1039/C8TA09865D

    13. [13]

      Li R G, Zhang F X, Wang D G, Yang J X, Li M R, Zhu J, Zhou X, Han H X, Li C. Spatial Separation of Photogenerated Electrons and Holes among {010} and {110} Crystal Facets of BiVO4[J]. Nat. Commun., 2013,4:1432-1438. doi: 10.1038/ncomms2401

    14. [14]

      Xiao X, Sheng Z Y, Yang L, Dong F. Low ‐ Temperature Selective Catalytic Reduction of NOx with NH3 over a Manganese and Cerium Oxide/Graphene Composite Prepared by a Hydrothermal Method[J]. Catal. Sci. Technol., 2016,6:1507-1514. doi: 10.1039/C5CY01228G

    15. [15]

      Wrede S, Tian H N. Towards Sustainable and Efficient p‐Type Metal Oxide Semiconductor Materials in Dye‐Sensitised Photocathodes for Solar Energy Conversion[J]. Phys. Chem. Chem. Phys., 2020,22:13850-13861. doi: 10.1039/D0CP01363C

    16. [16]

      Nguyen H T, Yang D, Zhu B, Lin H, Ma T Y, Jia B H. Doping Mechanism Directed Graphene Applications for Energy Conversion and Storage[J]. J. Mater. Chem. A, 2021,9:7366-7395. doi: 10.1039/D0TA11939C

    17. [17]

      Zhang F F, Zhu Y L, Lin Q, Zhang L, Zhang X W, Wang H T. Noble‐Metal Single‐Atoms in Thermocatalysis, Electrocatalysis, and Photocatalysis[J]. Energy Environ. Sci., 2021,14:2954-3009. doi: 10.1039/D1EE00247C

    18. [18]

      Yang S B, Gong Y J, Zhang J S, Zhan L, Ma L L, Fang Z Y, Vajtai R, Wang X C, Ajayan P M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution under Visible Light[J]. Adv. Mater., 2013,25:2452-2456. doi: 10.1002/adma.201204453

    19. [19]

      Yuan Y J, Ye Z J, Lu H W, Hu B, Li Y H, Chen D Q, Zhong J S, Yu Z T, Zou Z G. Constructing Anatase TiO2 Nanosheets with Exposed (001) Facets/Layered MoS2 Two ‐ Dimensional Nanojunctions for Enhanced Solar Hydrogen Generation[J]. ACS Catal., 2016,6(2):532-541. doi: 10.1021/acscatal.5b02036

    20. [20]

      Priebe J B, Karnahl M, Junge H, Beller M, Hollmann D, Bruckner A. Water Reduction with Visible Light: Synergy between Optical Transitions and Electron Transfer in Au‐TiO2 Catalysts Visualized by In Situ EPR Spectroscopy[J]. Angew. Chem. Int. Ed., 2013,52:11420-11424. doi: 10.1002/anie.201306504

    21. [21]

      Vehkamäki M, Hatanpää T, Ritala M, Leskelä M. Bismuth Precursors for Atomic Layer Deposition of Bismuth‐Containing Oxide Films[J]. J. Mater. Chem., 2004,14:3191-3197. doi: 10.1039/B405891G

    22. [22]

      Choi H, Stathatos E, Dionysiou D D. Photocatalytic TiO2 Films and Membranes for the Development of Efficient Wastewater Treatment and Reuse Systems[J]. Desalination, 2007,202:199-206. doi: 10.1016/j.desal.2005.12.055

    23. [23]

      Huang J, He Y R, Chen M J, Jiang B C, Huang Y M. Solar Evaporation Enhancement by a Compound Film Based on Au@TiO2 Core‐Shell Nanoparticles[J]. Sol. Energy, 2017,155:1225-1232. doi: 10.1016/j.solener.2017.07.070

    24. [24]

      Li K, Zhang H B, Tang Y P, Ying D W, Xu Y L, Wang Y L, Jia J P. Photocatalytic Degradation and Electricity Generation in a Rotating Disk Photoelectrochemical Cell over Hierarchical Structured BiOBr Film[J]. Appl. Catal. B, 2015,164:82-91. doi: 10.1016/j.apcatb.2014.09.017

    25. [25]

      Todorova N, Giannakopoulou T, Pomoni K, Yu J G, Vaimakis T, Trapalis C. Photocatalytic NOx Oxidation over Modified ZnO/TiO2 Thin Films[J]. Catal. Today, 2015,252:41-46. doi: 10.1016/j.cattod.2014.11.008

    26. [26]

      He Z L, Que W X, Xing Y L, Liu X B. Reporting Performance in MoS2 ‐TiO2 Bilayer and Heterojunction Films Based Dye ‐Sensitized Photovoltaic Devices[J]. J. Alloy. Compd., 2016,672:481-488. doi: 10.1016/j.jallcom.2016.02.186

    27. [27]

      Zhao H, Liu X, Dong Y M, Xia Y M, Wang H J, Zhu X M. Fabrication of a Z ‐ Scheme {001}/{110} Facet Heterojunction in BiOCl to Promote Spatial Charge Separation[J]. ACS Appl. Mater. Interfaces, 2020,12(28):31532-31541. doi: 10.1021/acsami.0c08687

    28. [28]

      Xu M L, Jiang X J, Li J R, Wang F J, Li K, Cheng X. Self‐Assembly of a 3D Hollow BiOBr@Bi ‐MOF Heterostructure with Enhanced Photocatalytic Degradation of Dyes[J]. ACS Appl. Mater. Interfaces, 2021,13(47):56171-56180. doi: 10.1021/acsami.1c16612

    29. [29]

      Mohaghegh N, Rahimi E, Gholami M R. Ag3PO4/BiPO4 p‐n Heterojunction Nanocomposite Prepared in Room ‐ Temperature Ionic Liquid Medium with Improved Photocatalytic Activity[J]. Mater. Sci. Semicond. Process., 2015,39:506-514. doi: 10.1016/j.mssp.2015.05.066

    30. [30]

      Zhang X C, Lu B Q, Li R, Li X L, Gao X Y, Fan C M. Simple Hydrolysis ‐ Photodeposition Route to Synthesize Ag/BiOCl0.5Br0.5 Composites with Highly Enhanced Visible‐Light Photocatalytic Properties[J]. Sep. Purif. Technol., 2015,154:68-75. doi: 10.1016/j.seppur.2015.09.021

    31. [31]

      Liu Y Y, Son W J, Lu J B, Huang B B, Dai Y, Whangbo M H. Composition Dependence of the Photocatalytic Activities of BiOCl1-xBrx Solid Solutions Under Visible Light[J]. Chem. Eur. J., 2011,17:9342-9349. doi: 10.1002/chem.201100952

    32. [32]

      Qi Y L, Zheng Y F, Song X C. Synthetic Adjustable Energy Band Structure of BiPO4‐BiOClxBr 1 -x p‐n Heterojunctions with Excellent Photocatalytic Activity[J]. J. Taiwan Inst. Chem. Eng., 2017,77:216-226. doi: 10.1016/j.jtice.2017.05.005

  • 加载中
    1. [1]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(3)
  • Abstract views(530)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return