Citation: Man‐Rong LIU, Ji‐Jiang WANG, Er‐Lin YUE, Long TANG, Xiao WANG, Xiang‐Yang HOU, Yu‐Qi ZHANG. Synthesis, Structure, Magnetic, and Fluorescent Sensing Properties of Cobalt(Ⅱ) Coordination Polymer Based on 1⁃(3, 5⁃Dicarboxybenzyl)⁃1H⁃pyrazole⁃3, 5⁃dicarboxylic Acid[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1601-1608. doi: 10.11862/CJIC.2022.152 shu

Synthesis, Structure, Magnetic, and Fluorescent Sensing Properties of Cobalt(Ⅱ) Coordination Polymer Based on 1⁃(3, 5⁃Dicarboxybenzyl)⁃1H⁃pyrazole⁃3, 5⁃dicarboxylic Acid

Figures(10)

  • A new coordination polymer (CP), [Co5(L)2(μ3‐OH)2(H2O)8]n (1) (H4L=1‐(3, 5‐dicarboxybenzyl)‐1H‐pyrazole‐3, 5‐dicarboxylic acid), was synthesized by hydrothermal method and characterized by single‐crystal X‐ray diffraction, elemental analyses, infrared spectroscopic analysis, and thermogravimetric analysis. The crystallographic analysis indicates that complex 1 crystallizes in the triclinic system with a space group of P1 and exhibits a 3D network structure. Each of the three Co(Ⅱ) ions in the molecule adopts a six‐coordinated pattern, forming a slightly twisted octahedral coordination configuration. The variable temperature magnetic susceptibility measurements indicate that there are antiferromagnetic interactions between the Co(Ⅱ) ions in complex 1. The fluorescence sensing experiments demonstrate that complex 1 exhibits fluorescent quenching to Hg2+ with high sensitivity and selectivity. Additionally, the Co(Ⅱ)‐CP sensor could be successfully used to assay the content of Hg2+ in Yanhe River water samples.
  • 加载中
    1. [1]

      Wang C, Liu D M, Lin W B. Metal‐Organic Frameworks as a Tunable Platform for Designing Functional Molecular Materials[J]. J. Am. Chem. Soc., 2013,135(36):13222-13234. doi: 10.1021/ja308229p

    2. [2]

      Furukawa H, Cordova K E, O′Keeffe M, Yaghi O M. The Chemistry and Applications of Metal‐Organic Frameworks[J]. Science, 2013,341(6149)1230444. doi: 10.1126/science.1230444

    3. [3]

      Thorarinsdottir A E, Harris T D. Metal‐Organic Framework Magnets[J]. Chem. Rev., 2020,120(16):8716-8789. doi: 10.1021/acs.chemrev.9b00666

    4. [4]

      Bagheri M, Masoomi M Y. Sensitive Ratiometric Fluorescent Metal‐Organic Framework Sensor for Calcium Signaling in Human Blood Ionic Concentration Media[J]. ACS Appl. Mater. Interfaces, 2020,12(4):4625-4631. doi: 10.1021/acsami.9b20489

    5. [5]

      Shi Y S, Yu Q, Zhang J W, Cui G H. Four Dual‐Functional Luminescent Zn(Ⅱ)‐MOFs Based on 1, 2, 4, 5‐Benzenetetracarboxylic Acid with Pyridylbenzimidazole Ligands for Detection of Iron(Ⅲ) Ions and Acetylacetone[J]. CrystEngComm, 2021,23(7):1604-1615. doi: 10.1039/D0CE01619E

    6. [6]

      Yang L T, Cai P Y, Zhang L L, Xu X Y, Yakovenko A A, Wang Q, Pang J D, Yuan S, Zou X D, Huang N, Huang Z H, Zhou H C. Ligand‐Directed Conformational Control over Porphyrinic Zirconium Metal‐Organic Frameworks for Size‐Selective Catalysis[J]. J. Am. Chem. Soc., 2021,143(31):12129-12137. doi: 10.1021/jacs.1c03960

    7. [7]

      Razavi S A A, Morsali A. Metal Ion Detection Using Luminescent‐MOFs: Principles, Strategies and Roadmap[J]. Coord. Chem. Rev., 2020,415213299. doi: 10.1016/j.ccr.2020.213299

    8. [8]

      Lin R B, Xiang S C, Xing H B, Zhou W, Chen B L. Exploration of Porous Metal‐Organic Frameworks for Gas Separation and Purification[J]. Coord. Chem. Rev., 2019,378:87-103. doi: 10.1016/j.ccr.2017.09.027

    9. [9]

      Xue D X, Wang Q, Bai J F. Amide‐Functionalized Metal‐Organic Frameworks: Syntheses, Structures and Improved Gas Storage and Separation Properties[J]. Coord. Chem. Rev., 2019,378:2-16. doi: 10.1016/j.ccr.2017.10.026

    10. [10]

      Xue D X, Belmabkhout Y, Shekhah O, Jiang H, Adil K, Cairns A J, Eddaoudi M. Tunable Rare Earth fcu ‐ MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction[J]. J. Am. Chem. Soc., 2015,137(15):5034-5040. doi: 10.1021/ja5131403

    11. [11]

      Kang Y S, Lu Y, Chen K, Zhao Y, Wang P, Sun W Y. Metal‐Organic Frameworks with Catalytic Centers: From Synthesis to Catalytic Application[J]. Coord. Chem. Rev., 2019,378:262-280. doi: 10.1016/j.ccr.2018.02.009

    12. [12]

      Lu L Y, Tao X W, Chen F Y, Cheng A L, Xue Q S, Gao E Q. A Series of New Sulfone‐Functionalized Coordination Polymers: Fascinating Architectures and Efficient Fluorescent Sensing of Nitrofuran Antibiotics[J]. J. Solid State Chem., 2021,301122251. doi: 10.1016/j.jssc.2021.122251

    13. [13]

      Gao J K, Huang Q, Wu Y H, Lan Y Q, Chen B L. Metal‐Organic Frameworks for Photo/Electrocatalysis[J]. Adv. Energy Sustainability Res., 2021,2(8)2100033. doi: 10.1002/aesr.202100033

    14. [14]

      Wu Y H, Li Y W, Gao J K, Zhang Q C. Recent Advances in Vacancy Engineering of Metal‐Organic Frameworks and Their Derivatives for Electrocatalysis[J]. SusMat, 2021,1(1):66-87. doi: 10.1002/sus2.3

    15. [15]

      Wang L Y, Xu H, Gao J K, Yao J M, Zhang Q C. Recent Progress in Metal‐Organic Frameworks ‐ Based Hydrogels and Aerogels and Their Applications[J]. Coord. Chem. Rev., 2019,398213016. doi: 10.1016/j.ccr.2019.213016

    16. [16]

      Lim D W, Kitagawa H. Proton Transport in Metal ‐ Organic Frameworks[J]. Chem. Rev., 2020,120(16):8416-8467. doi: 10.1021/acs.chemrev.9b00842

    17. [17]

      Stock N, Biswas S. Synthesis of Metal‐Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites[J]. Chem. Rev., 2011,112(2):933-969.

    18. [18]

      Qiu S L, Xue M, Zhu G S. Metal ‐ Organic Framework Membranes: From Synthesis to Separation Application[J]. Chem. Soc. Rev., 2014,43(16):6116-6140. doi: 10.1039/C4CS00159A

    19. [19]

      Feng F, Song N N, Hu W B. pH ‐ Dependent Supramolecular Self‐Assemblies of Copper(Ⅱ) (Fluorene‐9, 9‐diyl)dipropanoic Acid Complexes[J]. CrystEngComm, 2015,17(43):8216-8220. doi: 10.1039/C5CE01487E

    20. [20]

      Long L S. pH Effect on the Assembly of Metal ‐ Organic Architectures[J]. CrystEngComm, 2010,12(5):1354-1365. doi: 10.1039/b921146b

    21. [21]

      Zhang L, Lu S T, Zhang C, Du C X, Hou H W. Highly pH‐Dependent Synthesis of Two Novel Three ‐ Dimensional Dysprosium Complexes with Interesting Magnetic and Luminescence Properties[J]. CrystEngComm, 2015,17(4):846-855. doi: 10.1039/C4CE02023E

    22. [22]

      Lu W, Wei Z, Gu Z Y, Liu T F, Park J, Tian J, Zhang M W, Zhang Q, Gentle Ⅲ T, Bosch M, Zhou H C. Tuning the Structure and Function of Metal‐Organic Frameworks via Linker Design[J]. Chem. Soc. Rev., 2014,43(16):5561-5593. doi: 10.1039/C4CS00003J

    23. [23]

      He T, Kong X J, Li J R. Chemically Stable Metal ‐ Organic Frameworks: Rational Construction and Application Expansion[J]. Acc. Chem. Res., 2021,54(15):3083-3094. doi: 10.1021/acs.accounts.1c00280

    24. [24]

      Sun J, Shang K X, Wu Y J, Zhang Q, Yao X Q, Yang Y X, Hu D C, Liu J C. Three New Coordination Polymers Based on a 1‐(3, 5‐Dicar‐boxy‐benzyl)‐1H‐Pyrazole‐3, 5 ‐dicarboxylic Acid Ligand: Synthesis, Crystal Structures, Magnetic Properties and Selectively Sensing Properties[J]. Polyhedron, 2018,141:223-229. doi: 10.1016/j.poly.2017.11.037

    25. [25]

      Zhu X, Sun P P, Ding J G, Li B L, Li H Y. Tuning Cobalt Coordination Architectures by Bis(1, 2, 4‐triazol‐1‐ylmethyl)benzene Position Isomers and 5‐Nitroisophthalate[J]. Cryst. Growth Des., 2012,12(8):3992-3997. doi: 10.1021/cg300465r

    26. [26]

      WANG J J, HOU X Y, GAO L J, ZHANG M L, REN Y X, FU F. Synthesis, Crystal Structure, and Luminescence of 3, 3′, 5, 5′‐Benzene‐ 1, 3‐biyl‐tetrabenzoic Acid Ligand Based Zinc Coordination Polymer with 4‐Fold Interpenetrated dmd Topology[J]. Chinese J. Inorg. Chem., 2014,30(7):1616-1620.  

    27. [27]

      ZHANG M L, WANG J J, REN Y X. Synthesis, Crystal Structure, and Luminescence of Two Coordination Polymers Based 3, 3′, 5, 5′‐Benzene‐biyl‐tetrabenzoic Acid(The original text is 3, 3′, 5, 5′‐Benzene‐biy‐ltetrabenzoic Acid)[J]. Chinese J. Inorg. Chem., 2014,30(11):2477-2483.  

    28. [28]

      WANG J J, HOU X Y, GAO L J, ZHANG M L, REN Y X, FU F. Hydrothermal Synthesis, Crystal Structure and Luminescence of a 2D Bilayer Zn(Ⅱ) Coordination Polymer Based on Terphenyl‐2, 2′, 4, 4′‐tetracarboxylic Acid[J]. Chinese J. Inorg. Chem., 2014,30(2):379-383.  

    29. [29]

      Chen X L, Cui H L, Wang J J, Yang H, Wang X, Liu L, Ren Y X. Rational Design, Crystal Structures and Sensing Properties of a Series of Luminescent MOFs Based on a Flexible Tetracarboxylate Ligand and N‐donor Ligands[J]. CrystEngComm, 2019,21(48):7389-7406.

    30. [30]

      TANG L, FU Y H, WANG Y T, WANG H H, WANG J J, HOU X Y, WANG X. Three Complexes Constructed Using 2, 2′‐Oxybis(benzoic acid) and N‐Donor Ligands: Syntheses, Structures and Fluorescent Properties[J]. Chinese J. Inorg. Chem., 2020,36(8):1550-1556.  

    31. [31]

      Wang J J, Wang L B, Cao Z, Yue E L, Tang L, Wang X, Hou X Y, Zhang Y Q. Four Coordination Polymers Based on 5‐(3, 5‐Dicarboxy‐benzyloxy)isophthalic Acid: Synthesis, Structures, Photocatalytic Properties, Fluorescence Sensing and Magnetic Properties[J]. J. Solid State Chem., 2021,302122379.

    32. [32]

      WANG L B, WANG J J, YUE E L, TANG L, WANG X, HOU X Y, ZHANG Y Q. Synthesis, Structure, Magnetic and Photocatalytic Properties of Nickel(Ⅱ) Coordination Polymer Based on 1‐(3, 5‐Dicar‐boxybenzyl)‐1H‐pyrazole‐3, 5‐dicarboxylic Acid Ligand[J]. Chinese J. Inorg. Chem., 2021,37(4):744-750.  

    33. [33]

      Cepeda J, Rodríguez‐Diéguez A. Tuning the Luminescence Performance of Metal‐Organic Frameworks Based on d10 Metal Ions: From an Inherent Versatile Behaviour to Their Response to External Stim‐ uli[J]. CrystEngComm, 2016,18(44):8556-8573.

    34. [34]

      Zhang L, Liu L, Huang C, Han X, Guo L A, Xu H, Hou H W, Fan Y T. Polynuclear Ni(Ⅱ)/Co(Ⅱ)/Mn(Ⅱ) Complexes Based on Terphenyl‐Tetracarboxylic Acid Ligand: Crystal Structures and Research of Magnetic Properties[J]. Cryst. Growth Des., 2015,15(7):3426-3434.

    35. [35]

      Fan C B, Zhu B, Zhang X, Bi C F, Zhang D M, Zong Z, Fan Y H. Highly Stable Acid‐Induced Emission‐Enhancing Cd‐MOFs: Synthesis, Characterization, and Detection of Glutamic Acid in Water and Fe Ions in Acid[J]. Inorg. Chem., 2021,60(9):6339-6348.

  • 加载中
    1. [1]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    2. [2]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    5. [5]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    6. [6]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    7. [7]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    10. [10]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    11. [11]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    12. [12]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    13. [13]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    14. [14]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    15. [15]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    16. [16]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    19. [19]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    20. [20]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

Metrics
  • PDF Downloads(6)
  • Abstract views(454)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return