Citation: Da-Ze NING, Hong-Guang SUN. Performance of the Inward Radial Hollow TiN Particles as Cathodes for Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1375-1381. doi: 10.11862/CJIC.2022.143 shu

Performance of the Inward Radial Hollow TiN Particles as Cathodes for Lithium-Sulfur Batteries

  • Corresponding author: Hong-Guang SUN, hgsun816@qust.edu.cn
  • Received Date: 18 March 2022
    Revised Date: 17 May 2022

Figures(5)

  • The inward radially hollow structure TiN particles (IRHTiNs) was designed and synthesized by using the hard-template method and combined with sulfur (S) to prepare lithium-sulfur batteries (LSB) cathodes. Subsequently, the structure and composition of IRHTiNs and IRHTiNs/S composite cathodes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). In the electrochemical test process, compared with the C cathodes, LSB using the IRHTiNs cathodes exhibited a high original specific capacity of 1 256 mAh·g-1, the capacity fading rate was significantly reduced, and the LSB performance was significantly improved.
  • 加载中
    1. [1]

      Shi H D, Ren X M, Lu J M, Dong C, Liu J, Yang Q H, Chen J, Wu Z S. Dual-Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries[J]. Energy Storage Mater., 2020,10(39)2002271.

    2. [2]

      Wang W P, Zhang J, Chou J, Yin Y X, You Y, Xin S, Guo Y G. Solidifying Cathode-Electrolyte Interface for Lithium-Sulfur Batteries[J]. Energy Storage Mater., 2021,11(2)2000791.

    3. [3]

      Ding B, Wang J, Fan Z J, Chen S, Lin Q Y, Lu X J, Dou H, Nanjundan A K, Yushin G, Zhang X G, Yamauchi Y. Solid-State Lithium-Sulfur Batteries: Advances, Challenges and Perspectives[J]. Mater. Today, 2020,40:114-131. doi: 10.1016/j.mattod.2020.05.020

    4. [4]

      Lim J, Pyun J, Char K. Recent Approaches for the Direct Use of Elemental Sulfur in the Synthesis and Processing of Advanced Materials[J]. Angew. Chem. Int. Ed., 2015,54(11):3249-3258. doi: 10.1002/anie.201409468

    5. [5]

      Son Y, Lee J S, Son Y, Jang J H, Cho J. Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries[J]. Adv. Energy Mater., 2015,5(16)1500110. doi: 10.1002/aenm.201500110

    6. [6]

      Zhou L, Danilov D L, Eichel R A, Notten P H L. Host Materials Anchoring Polysulfides in Li-S Batteries Reviewed[J]. Adv. Energy Mater., 2020,11(15)2001304.

    7. [7]

      Zheng M B, Chi Y, Hu Q, Tang H, Jiang X L, Zhang L, Zhang S T, Pang H, Xu Q. Carbon Nanotube-Based Materials for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2019,7(29):17204-17241. doi: 10.1039/C9TA05347F

    8. [8]

      Zeng W D, Cheng M M C, Ng K Y S. Cathode Framework of Nanostructured Titanium Nitride/Graphene for Advanced Lithium-Sulfur Batteries[J]. ChemElectroChem, 2019,6(10):2796-2804. doi: 10.1002/celc.201900364

    9. [9]

      Li H T, Li Y G, Zhang L. Designing Principles of Advanced Sulfur Cathodes toward Practical Lithium-Sulfur Batteries[J]. SusMat, 2022,2(1):34-64. doi: 10.1002/sus2.42

    10. [10]

      Cui Z Q, Yao J, Mei T, Zhou S Y, Hou B F, Li J, Li J H, Wang J Y, Qian J W, Wang X B. Strong Lithium Polysulfides Chemical Trapping of TiC-TiO2/S Composite for Long-Cycle Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2019,298(1):43-51.

    11. [11]

      Yang J H, Yang X F, Cheong J L, Zaghib K, Trudeau M L, Ying J Y. Nanoboxes with a Porous MnO Core and Amorphous TiO2 Shell as a Mediator for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2021,9(8):4952-4961. doi: 10.1039/D0TA09700D

    12. [12]

      Gao B, Li X X, Ding K, Huang C, Li Q W, Chu P K, Huo K. Recent Progress in Nanostructured Transition Metal Nitrides for Advanced Electrochemical Energy Storage[J]. J. Mater. Chem. A, 2019,7(1):14-37. doi: 10.1039/C8TA05760E

    13. [13]

      Lim W G, Jo C S, Cho A, Hwang J, Kim S, Han J W, Lee J. Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation[J]. Adv. Mater., 2019,31(3)1806547. doi: 10.1002/adma.201806547

    14. [14]

      Wang Y K, Zhang R F, Pang Y C, Chen X, Lang J X, Xu J J, Xiao C H, Li H L, Xi K, Ding S J. Carbon@Titanium Nitride Dual Shell Nanospheres as Multi-functional Hosts for Lithium Sulfur Batteries[J]. Energy Storage Mater., 2019,16:228-235. doi: 10.1016/j.ensm.2018.05.019

    15. [15]

      Li H X, Ma S, Li J W, Liu F Y, Zhou H H, Huang Z Y, Jiao S Q, Kuang Y. Altering the Reaction Mechanism to Eliminate the Shuttle Effect in Lithium-Sulfur Batteries[J]. Energy Storage Mater., 2020,26:203-212. doi: 10.1016/j.ensm.2020.01.002

    16. [16]

      Polshettiwar V, Cha D, Zhang X, Basset J M. High-Surface-Area Silica Nanospheres (KCC-1) with a Fibrous Morphology[J]. Angew. Chem. Int. Ed., 2010,122(50):9846-9850. doi: 10.1002/ange.201003451

    17. [17]

      Liang X, Garsuch A, Nazar L F. Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries[J]. Angew. Chem. Int. Ed., 2015,127(13):3979-3983. doi: 10.1002/ange.201410174

    18. [18]

      Zhou S Y, Hu J Y, Liu S G, Lin J X, Cheng J, Mei T, Wang X B, Liao H G, Huang L, Sun S G. Biomimetic Micro Cell Cathode for High Performance Lithium-Sulfur Batteries[J]. Nano Energy, 2020,72104680. doi: 10.1016/j.nanoen.2020.104680

    19. [19]

      Wu Q P, Yao Z G, Zhou X J, Xu J, Cao F H, Li C L. Built-In Catalysis in Confined Nanoreactors for High-Loading Li-S Batteries[J]. ACS Nano, 2020,14(3):3365-3377. doi: 10.1021/acsnano.9b09231

    20. [20]

      Jin Z S, Lin T N, Jia H F, Liu B Q, Zhang Q, Li L, Zhang L Y, Su Z M, Wang C G. Expediting the Conversion of Li2S2 to Li2S Enables High-Performance Li-S Batteries[J]. ACS Nano, 2021,15(4):7318-7327. doi: 10.1021/acsnano.1c00556

    21. [21]

      Cai D, Liu B K, Zhu D H, Chen D, Lu M J, Cao J M, Wang Y H, Huang W H, Shao Y, Tu H, Han W. Ultrafine Co3Se4 Nanoparticles in Nitrogen-Doped 3D Carbon Matrix for High-Stable and Long-Cycle-Life Lithium Sulfur Batteries[J]. Adv. Energy Mater., 2020,10(19)1904273. doi: 10.1002/aenm.201904273

    22. [22]

      Yang X F, Gao X J, Sun Q, Jand S P, Yu Y, Zhao Y, Li X, Adair K, Kuo L Y, Rohrer J, Liang J N, Lin X T, Banis M N, Hu Y F, Zhang H Z, Li X F, Li R Y, Zhang H M, Kaghazchi P, Sham T K, Sun X L. Promoting the Transformation of Li2S2 to Li2S: Significantly Increasing Utilization of Active Materials for High-Sulfur-Loading Li-S Batteries[J]. Adv. Mater., 2019,31(25)1901220. doi: 10.1002/adma.201901220

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    16. [16]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(0)
  • Abstract views(703)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return