Citation: Da-Ze NING, Hong-Guang SUN. Performance of the Inward Radial Hollow TiN Particles as Cathodes for Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1375-1381. doi: 10.11862/CJIC.2022.143 shu

Performance of the Inward Radial Hollow TiN Particles as Cathodes for Lithium-Sulfur Batteries

  • Corresponding author: Hong-Guang SUN, hgsun816@qust.edu.cn
  • Received Date: 18 March 2022
    Revised Date: 17 May 2022

Figures(5)

  • The inward radially hollow structure TiN particles (IRHTiNs) was designed and synthesized by using the hard-template method and combined with sulfur (S) to prepare lithium-sulfur batteries (LSB) cathodes. Subsequently, the structure and composition of IRHTiNs and IRHTiNs/S composite cathodes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). In the electrochemical test process, compared with the C cathodes, LSB using the IRHTiNs cathodes exhibited a high original specific capacity of 1 256 mAh·g-1, the capacity fading rate was significantly reduced, and the LSB performance was significantly improved.
  • 加载中
    1. [1]

      Shi H D, Ren X M, Lu J M, Dong C, Liu J, Yang Q H, Chen J, Wu Z S. Dual-Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries[J]. Energy Storage Mater., 2020,10(39)2002271.

    2. [2]

      Wang W P, Zhang J, Chou J, Yin Y X, You Y, Xin S, Guo Y G. Solidifying Cathode-Electrolyte Interface for Lithium-Sulfur Batteries[J]. Energy Storage Mater., 2021,11(2)2000791.

    3. [3]

      Ding B, Wang J, Fan Z J, Chen S, Lin Q Y, Lu X J, Dou H, Nanjundan A K, Yushin G, Zhang X G, Yamauchi Y. Solid-State Lithium-Sulfur Batteries: Advances, Challenges and Perspectives[J]. Mater. Today, 2020,40:114-131. doi: 10.1016/j.mattod.2020.05.020

    4. [4]

      Lim J, Pyun J, Char K. Recent Approaches for the Direct Use of Elemental Sulfur in the Synthesis and Processing of Advanced Materials[J]. Angew. Chem. Int. Ed., 2015,54(11):3249-3258. doi: 10.1002/anie.201409468

    5. [5]

      Son Y, Lee J S, Son Y, Jang J H, Cho J. Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries[J]. Adv. Energy Mater., 2015,5(16)1500110. doi: 10.1002/aenm.201500110

    6. [6]

      Zhou L, Danilov D L, Eichel R A, Notten P H L. Host Materials Anchoring Polysulfides in Li-S Batteries Reviewed[J]. Adv. Energy Mater., 2020,11(15)2001304.

    7. [7]

      Zheng M B, Chi Y, Hu Q, Tang H, Jiang X L, Zhang L, Zhang S T, Pang H, Xu Q. Carbon Nanotube-Based Materials for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2019,7(29):17204-17241. doi: 10.1039/C9TA05347F

    8. [8]

      Zeng W D, Cheng M M C, Ng K Y S. Cathode Framework of Nanostructured Titanium Nitride/Graphene for Advanced Lithium-Sulfur Batteries[J]. ChemElectroChem, 2019,6(10):2796-2804. doi: 10.1002/celc.201900364

    9. [9]

      Li H T, Li Y G, Zhang L. Designing Principles of Advanced Sulfur Cathodes toward Practical Lithium-Sulfur Batteries[J]. SusMat, 2022,2(1):34-64. doi: 10.1002/sus2.42

    10. [10]

      Cui Z Q, Yao J, Mei T, Zhou S Y, Hou B F, Li J, Li J H, Wang J Y, Qian J W, Wang X B. Strong Lithium Polysulfides Chemical Trapping of TiC-TiO2/S Composite for Long-Cycle Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2019,298(1):43-51.

    11. [11]

      Yang J H, Yang X F, Cheong J L, Zaghib K, Trudeau M L, Ying J Y. Nanoboxes with a Porous MnO Core and Amorphous TiO2 Shell as a Mediator for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2021,9(8):4952-4961. doi: 10.1039/D0TA09700D

    12. [12]

      Gao B, Li X X, Ding K, Huang C, Li Q W, Chu P K, Huo K. Recent Progress in Nanostructured Transition Metal Nitrides for Advanced Electrochemical Energy Storage[J]. J. Mater. Chem. A, 2019,7(1):14-37. doi: 10.1039/C8TA05760E

    13. [13]

      Lim W G, Jo C S, Cho A, Hwang J, Kim S, Han J W, Lee J. Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation[J]. Adv. Mater., 2019,31(3)1806547. doi: 10.1002/adma.201806547

    14. [14]

      Wang Y K, Zhang R F, Pang Y C, Chen X, Lang J X, Xu J J, Xiao C H, Li H L, Xi K, Ding S J. Carbon@Titanium Nitride Dual Shell Nanospheres as Multi-functional Hosts for Lithium Sulfur Batteries[J]. Energy Storage Mater., 2019,16:228-235. doi: 10.1016/j.ensm.2018.05.019

    15. [15]

      Li H X, Ma S, Li J W, Liu F Y, Zhou H H, Huang Z Y, Jiao S Q, Kuang Y. Altering the Reaction Mechanism to Eliminate the Shuttle Effect in Lithium-Sulfur Batteries[J]. Energy Storage Mater., 2020,26:203-212. doi: 10.1016/j.ensm.2020.01.002

    16. [16]

      Polshettiwar V, Cha D, Zhang X, Basset J M. High-Surface-Area Silica Nanospheres (KCC-1) with a Fibrous Morphology[J]. Angew. Chem. Int. Ed., 2010,122(50):9846-9850. doi: 10.1002/ange.201003451

    17. [17]

      Liang X, Garsuch A, Nazar L F. Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries[J]. Angew. Chem. Int. Ed., 2015,127(13):3979-3983. doi: 10.1002/ange.201410174

    18. [18]

      Zhou S Y, Hu J Y, Liu S G, Lin J X, Cheng J, Mei T, Wang X B, Liao H G, Huang L, Sun S G. Biomimetic Micro Cell Cathode for High Performance Lithium-Sulfur Batteries[J]. Nano Energy, 2020,72104680. doi: 10.1016/j.nanoen.2020.104680

    19. [19]

      Wu Q P, Yao Z G, Zhou X J, Xu J, Cao F H, Li C L. Built-In Catalysis in Confined Nanoreactors for High-Loading Li-S Batteries[J]. ACS Nano, 2020,14(3):3365-3377. doi: 10.1021/acsnano.9b09231

    20. [20]

      Jin Z S, Lin T N, Jia H F, Liu B Q, Zhang Q, Li L, Zhang L Y, Su Z M, Wang C G. Expediting the Conversion of Li2S2 to Li2S Enables High-Performance Li-S Batteries[J]. ACS Nano, 2021,15(4):7318-7327. doi: 10.1021/acsnano.1c00556

    21. [21]

      Cai D, Liu B K, Zhu D H, Chen D, Lu M J, Cao J M, Wang Y H, Huang W H, Shao Y, Tu H, Han W. Ultrafine Co3Se4 Nanoparticles in Nitrogen-Doped 3D Carbon Matrix for High-Stable and Long-Cycle-Life Lithium Sulfur Batteries[J]. Adv. Energy Mater., 2020,10(19)1904273. doi: 10.1002/aenm.201904273

    22. [22]

      Yang X F, Gao X J, Sun Q, Jand S P, Yu Y, Zhao Y, Li X, Adair K, Kuo L Y, Rohrer J, Liang J N, Lin X T, Banis M N, Hu Y F, Zhang H Z, Li X F, Li R Y, Zhang H M, Kaghazchi P, Sham T K, Sun X L. Promoting the Transformation of Li2S2 to Li2S: Significantly Increasing Utilization of Active Materials for High-Sulfur-Loading Li-S Batteries[J]. Adv. Mater., 2019,31(25)1901220. doi: 10.1002/adma.201901220

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    3. [3]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    4. [4]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    7. [7]

      Xiaoli CHENZhihong LUOYuzhu XIONGAihua WANGXue CHENJiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    10. [10]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    11. [11]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    12. [12]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    13. [13]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    14. [14]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    16. [16]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    17. [17]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    18. [18]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

Metrics
  • PDF Downloads(0)
  • Abstract views(1563)
  • HTML views(218)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return