Citation: Xiao-Qin WEI, Feng-Ying ZHANG, Wan-Xi LI, Xin-Yi WANG, Ai-Hua ZHANG, Yu-Fang LIU. Synthesis and Slow Magnetic Relaxation of a Disc-like Dysprosium Cluster[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1382-1390. doi: 10.11862/CJIC.2022.141 shu

Synthesis and Slow Magnetic Relaxation of a Disc-like Dysprosium Cluster

Figures(10)

  • By using rare earth salt of DyCl3·6H2O, a bidentate ligand of tmphen and the block of[Mo(CN)7]4-, a dysprosium heptanuclear cluster was self-assembled with the formula of[Dy7(tmphen)12O6(OH)6Cl2] [Mo(tmphen) O(CN)3]6Cl7·66H2O (1, tmphen=3, 4, 7, 8-tetramethyl-1, 10-phenanthroline), which was characterized structurally and magnetically. The crystal structure shows that compound 1 is dominated by a disc-like structure of dysprosium heptanuclear. The[Mo(CN)7]4- block was oxidized and decomposed, forming[Mo(tmphen) O (CN)3]+ cations free in the lattice. Besides, weak π-π interactions are found between aromatic rings of tmphen. The direct-current (dc) magnetic susceptibility indicated this compound had no hysteresis loop at low temperatures due to the existence of the quantum tunneling relaxation path. The alternating current (ac) magnetic susceptibility, however, illustrated that the compound exhibited slow magnetic relaxation under zero field, showing the properties of a single-molecule magnet, with an effective barrier of 51.6 K (35.8 cm-1, τ0=17 μs).
  • 加载中
    1. [1]

      Miller J S, Gatteschi D. Molecule-Based Magnets[J]. Chem. Soc. Rev., 2011,40:3065-3066. doi: 10.1039/c1cs90019f

    2. [2]

      Leuenberger M N, Loss D. Quantum Computing in Molecular Magnets[J]. Nature, 2001,410:789-793. doi: 10.1038/35071024

    3. [3]

      Bogani L, Wernsdorfer W. Molecular Spintronics Using Single-Molecule Magnets[J]. Nat. Mater., 2008,7(3):179-186. doi: 10.1038/nmat2133

    4. [4]

      Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, Affronte M. Graphene Spintronic Devices with Molecular Nanomagnets[J]. Nano Lett., 2011,11(7):2634-2639. doi: 10.1021/nl2006142

    5. [5]

      Sessoli R, Gatteschi D, Caneschi A, Novak M A. High-Spin Molecules: [Mn12O12(O2CR)16(H2O)4][J]. Nature, 1993,365(6442):141-143. doi: 10.1038/365141a0

    6. [6]

      Shao D, Wang X Y. Development of Single-Molecule Magnets[J]. Chinese J. Chem., 2020,38(9):1005-1018. doi: 10.1002/cjoc.202000090

    7. [7]

      Sessoli R, Powell A K. Strategies towards Single Molecule Magnets Based on Lanthanide Ions[J]. Coord. Chem. Rev., 2009,253(19):2328-2341.

    8. [8]

      Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level[J]. J. Am. Chem. Soc., 2003,125(29):8694-8695. doi: 10.1021/ja029629n

    9. [9]

      Gómez-Coca S, Aravena D, Morales R, Ruiz E. Large Magnetic Anisotropy in Mononuclear Metal Complexes[J]. Coord. Chem. Rev., 2015,289:379-392.

    10. [10]

      Woodruff D N, Winpenny R E P, Layfield R A. Lanthanide Single-Molecule Magnets[J]. Chem. Rev., 2013,113(7):5110-5148. doi: 10.1021/cr400018q

    11. [11]

      Liu J L, Chen Y C, Tong M L. Symmetry Strategies for High Performance Lanthanide-Based Single-Molecule Magnets[J]. Chem. Soc. Rev., 2018,47(7):2431-2453. doi: 10.1039/C7CS00266A

    12. [12]

      Rinehart J D, Long J R. Exploiting Single-Ion Anisotropy in the Design of f-Element Single-Molecule Magnets[J]. Chem. Sci., 2011,2(11):2078-2085. doi: 10.1039/c1sc00513h

    13. [13]

      Dey A, Kalita P, Chandrasekhar V. Lanthanide(Ⅲ)-Based Single-Ion Magnets[J]. ACS Omega, 2018,3(8):9462-9475. doi: 10.1021/acsomega.8b01204

    14. [14]

      REN M, ZHENG L M. Lanthanide-Based Single Molecule Magnets[J]. Acta Chim. Sinica, 2015,73(11):1091-1113.  

    15. [15]

      Li H Q, Sun Y C, Shi L, Chen F L, Shen F X, Zhao Y, Wang X Y. Modulating the Structures and Magnetic Properties of Dy (Ⅲ) Single-Molecule Magnets through Acid-Base Regulation[J]. Inorg. Chem., 2022,61(4):2272-2283. doi: 10.1021/acs.inorgchem.1c03639

    16. [16]

      Goodwin C A P, Ortu F, Reta D, Chilton N F, Mills D P. Molecular Magnetic Hysteresis at 60 Kelvin in Dysprosocenium[J]. Nature, 2017,548(7668):439-442. doi: 10.1038/nature23447

    17. [17]

      Guo F S, Day B M, Chen Y C, Tong M L, Mansikkamäki A, Layfield R A. Magnetic Hysteresis up to 80 Kelvin in a Dysprosium Metallocene Single-Molecule Magnet[J]. Science, 2018,362(6421):1400-1403. doi: 10.1126/science.aav0652

    18. [18]

      Pointillart F, Cador O, Le Guennic B, Ouahab L. Uncommon Lanthanide Ions in Purely 4f Single Molecule Magnets[J]. Coord. Chem. Rev., 2017,346:150-175. doi: 10.1016/j.ccr.2016.12.017

    19. [19]

      Ashebr T G, Li H, Ying X, Li X L, Zhao C, Liu S, Tang J K. Emerging Trends on Designing High-Performance Dysprosium (Ⅲ) Single-Molecule Magnets[J]. ACS Mater. Lett., 2022,4(2):307-319. doi: 10.1021/acsmaterialslett.1c00765

    20. [20]

      Liu K, Shi W, Cheng P. Toward Heterometallic Single-Molecule Magnets: Synthetic Strategy, Structures and Properties of 3d-4f Discrete Complexes[J]. Coord. Chem. Rev., 2015,289:74-122.

    21. [21]

      Demir S, Jeon I R, Long J R, Harris T D. Radical Ligand-Containing Single-Molecule Magnets[J]. Coord. Chem. Rev., 2015,289:149-176.

    22. [22]

      Mironov V S, Chibotaru L F, Ceulemans A. Mechanism of a Strongly Anisotropic Mo-CN-Mn Spin-Spin Coupling in Molecular Magnets Based on the [Mo(CN)7]4- Heptacyanometalate: A New Strategy for Single-Molecule Magnets with High Blocking Temperatures[J]. J. Am. Chem. Soc., 2003,125(32):9750-9760. doi: 10.1021/ja029518o

    23. [23]

      Qian K, Huang X C, Zhou C, You X Z, Wang X Y, Dunbar K R. A Single-Molecule Magnet Based on Heptacyanomolybdate with the Highest Energy Barrier for a Cyanide Compound[J]. J. Am. Chem. Soc., 2013,135(36):13302-13305. doi: 10.1021/ja4067833

    24. [24]

      Shi L, Shao D, Wei X Q, Dunbar K R, Wang X Y. Enhanced Single-Chain Magnet Behavior via Anisotropic Exchange in a Cyano-Bridged Mo-Mn Chain[J]. Angew. Chem. In. Ed., 2020,59(26):10379-10384. doi: 10.1002/anie.202001706

    25. [25]

      Wu D Q, Shao D, Wei X Q, Shen F X, Shi L, Kempe D, Zhang Y Z, Dunbar K R, Wang X Y. Enhanced Single-Chain Magnet Behavior via Anisotropic Exchange in a Cyano-Bridged Mo-Mn Chain[J]. J. Am. Chem. Soc., 2017,139(34):11714-11717. doi: 10.1021/jacs.7b07008

    26. [26]

      Wei X Q, Qian K, Wei H Y, Wang X Y. A One-Dimensional Magnet Based on[Mo(CN)7]4-[J]. Inorg. Chem., 2016,55(11):5107-5109. doi: 10.1021/acs.inorgchem.6b00787

    27. [27]

      Wei X Q, Wang K J, Wu D Q, Shao D, Shi L, Shen F X, Wei H Y, Wang X Y. Two Three-Dimensional[Mo(CN)7]4--Based Magnets Showing New Topologies and Ferrimagnetic Ordering below 80 K[J]. Dalton Trans., 2019,48(24):8843-8853. doi: 10.1039/C9DT01290G

    28. [28]

      Young R C. A Complex Cyanide of Trivalent Molybdenum[J]. J. Am.Chem. Soc., 1932,54(4):1402-1405. doi: 10.1021/ja01343a018

    29. [29]

      CrysAlis Pro, Rigaku Oxford Diffraction Ltd., Yarnton, England, 2021.

    30. [30]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2:A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Crystallogr., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    31. [31]

      Sheldrick G M. SHELXT-Integrated Space-Group and Crystal-Structure Determination[J]. Acta Crystallogr. Sect. A, 2015,A71(1):3-8.

    32. [32]

      Llunell M, Casanova D, Cirera J, Alemany P, Alvarez S. SHAPE Version 2.1, University of Barcelona, Spain, 2013.

    33. [33]

      Altermatt D, Brown I D. The Automatic Searching for Chemical Bonds in Inorganic Crystal Structures[J]. Acta Crystallogr. Sect. B, 1985,B41:240-244.

    34. [34]

      Brese N E, O'Keeffe M. Bond-Valence Parameters for Solids[J]. Acta Crystallogr. Sect. B, 1991,47:192-197. doi: 10.1107/S0108768190011041

    35. [35]

      Brown I D. Recent Developments in the Methods and Applications of the Bond Valence Model[J]. Chem. Rev., 2009,109(12):6858-6919. doi: 10.1021/cr900053k

    36. [36]

      Sharples J W, Zheng Y Z, Tuna F, McInnes E J L, Collison D. Lanthanide Discs Chill Well and Relax Slowly[J]. Chem. Commun., 2011,47(27):7650-7652. doi: 10.1039/c1cc12252e

  • 加载中
    1. [1]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(4)
  • Abstract views(740)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return