Citation: Zhong-Yan LI, Hai-Bo QIN, Hong-Yu ZHU, Xu FAN, Lin YUAN. Three Salicylaldehyde Schiff Base Fluorescent Probes: Synthesis and Recognition of Zn2+[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1291-1298. doi: 10.11862/CJIC.2022.137 shu

Three Salicylaldehyde Schiff Base Fluorescent Probes: Synthesis and Recognition of Zn2+

  • Corresponding author: Lin YUAN, tcyl431102@163.com
  • Received Date: 12 December 2021
    Revised Date: 24 April 2022

Figures(11)

  • Three novel Schiff-base fluorescent probes, 2-((2-hydroxybenzylidene)amino)-2-(hydroxymethyl)propane- 1, 3-diol (L1), 2-((5-chloro-2-hydro-xybenzylidene)amino)-2-(hydroxymethyl)-propane-1, 3-diol (L2), and 2-((2-hydroxy-4-methoxy-benzylidene)amino)-2-(hydroxymethyl)propane-1, 3-diol (L3), were designed and synthesized, and characterized by 1H NMR, 13C NMR, elemental analysis, and HRMS. The results of the spectral analysis showed that probe L2 was more selective and sensitive to Zn2+ than probes L1 and L3. The detection limit of L2 was found to be 11.96 nmol·L-1, which was far lower than the limit value of Zn2+ in drinking water, 1.0 mg·L-1 (about 15 μmol· L-1), stipulated in the national standard GB5749-2006. There was a good linear relationship between the fluorescence intensity of probe L2 and the concentration of Zn2+ in a range of 0 to 10 μmol·L-1. Meanwhile, the singlecrystal structure of complex[Zn(C11H13ClNO4)2] (L2-Zn2+) and the Job's plot revealed a 2:1 L2-Zn2+ identification. Moreover, probe L2 could detect Zn2+ in actual water samples.
  • 加载中
    1. [1]

      Chen Y C, Bai Y, Han Z, He W J, Guo Z J. Photoluminescence Imaging of Zn2+ in Living Systems[J]. Chem. Soc. Rev., 2015,44:4517-4546. doi: 10.1039/C5CS00005J

    2. [2]

      Bouain N, Shahzad Z, Rouached A, Khan G A, Berthomieu P, Abdelly C, Poirier Y, Rouached H. Phosphate and Zinc Transport and Signalling in Plants: Toward a Better Understanding of Their Homeostasis Interaction[J]. J. Exp. Bot., 2014,65:5725-5741. doi: 10.1093/jxb/eru314

    3. [3]

      Pathak R K, Hinge V K, Rai A, Panda D, Rao C P. Imino-PhenolicPyridyl Conjugates of Calix [4] arene (L1 and L2) as Primary Fluorescence Switch-On Sensors for Zn2+ in Solution and in Hela Cells and the Recognition of Pyrophosphate and ATP by[ZnL2].[J]. Inorg. Chem., 2012,51:4994-5005. doi: 10.1021/ic202426v

    4. [4]

      WAN D D, SU G Y, XU Z H, ZHANG Y M, WU Z Y, HE W J, GUO Z J. Ratiometric Sensing of Zn2+ by 2-(Pyridin-2'-yl)-1H-benzo[d]imidazole[J]. Chinese J. Inorg. Chem., 2008,24(8):1253-1260.

    5. [5]

      Li K, Tong A. A New Fluorescent Chemosensor for Zn2+ with Facile Synthesis: "Turn-On" Response in Water at Neutral pH and Its Application for Live Cell Imaging[J]. Sens. Actuator B-Chem., 2013,184:248-253. doi: 10.1016/j.snb.2013.04.083

    6. [6]

      Vallee B L, Falchuk K H. The Biochemical Basis of Zinc Physiology[J]. Physiol. Rev., 1993,73:79-118. doi: 10.1152/physrev.1993.73.1.79

    7. [7]

      Frederickson C J, Koh J Y, Bush A I. The Neurobiology of Zinc in Health and Disease[J]. Nat. Rev. Neurosci., 2005,6:449-462. doi: 10.1038/nrn1671

    8. [8]

      Lodeiro C, Pina F. Luminescent and Chromogenic Molecular Probes Based on Polyamines and Related Compounds[J]. Coord. Chem. Rev., 2009,253:1353-1383. doi: 10.1016/j.ccr.2008.09.008

    9. [9]

      Wang L, Li Y F, Li G P, Xie Z K, Ye B X. Electrochemical Characters of Hymecromone at the Graphene Modified Electrode and Its Analytical Application[J]. Anal. Methods, 2015,7:3000-3005. doi: 10.1039/C4AY03051F

    10. [10]

      Sarkar D, Pramanik A, Biswas S, Karmakar P, Kumar Mondal T. Al3+ Selective Coumarin Based Reversible Chemosensor: Application in Living Cell Imaging and as Integrated Molecular Logic Gate[J]. RSC Adv., 2014,4:30666-30672. doi: 10.1039/C4RA04318A

    11. [11]

      HE Q F, WU Y H, CAI Z J, XIE W. Synthesis of Fluorescent Crosslinked Stabilized Polymeric Micelles Based on Salicylidene Schiff Base/Zn2+ Complexes and Sensor for Cu2+ Detection[J]. Chinese Journal of Applied Chemistry, 2016,33(6):701-709.  

    12. [12]

      Savory J, Ghribi O, Forbes M S, Herman M M. Aluminium and Neuronal Cell Injury: Inter-Relationships between Neurofilamentous Arrays and Apoptosis[J]. J. Inorg. Biochem., 2001,87:15-19. doi: 10.1016/S0162-0134(01)00309-9

    13. [13]

      Walton J R. Aluminum in Hippocampal Neurons from Humans with Alzheimer's Disease[J]. Neurotoxicology, 2006,27:385-394. doi: 10.1016/j.neuro.2005.11.007

    14. [14]

      CHEN B, WANG S J, SONG Z K, GUO Y. Naphthol-Based Shiff Base as a Selective Fluorescent Probe for Detecting Zn2+ in Living Cells[J]. Chinese J. Inorg. Chem., 2017,33(10):1722-1730.  

    15. [15]

      HU B, ZHANG Y, ZHU L, LUO X B, ZHOU D, XIE Y, HUANG W. A Pyridine Triazole Modified Coumarin Fluorescent Sensor for Selective Detection of Cu2+ Ions[J]. Chinese J. Inorg. Chem., 2020,36(7):1375-1382.  

    16. [16]

      WU H M, GUO Y, CAO J F, CHEN Q Q. A Highly Sensitive Fluorescent Probe for Detection of Magnesium Ion Based on Novel Schiff's Base[J]. Chin. J. Anal. Chem., 2018,46(3):379-385.  

    17. [17]

      DONG Z M, WANG J N, ZHANG Q, WANG Y. A Novel Fluorescent Probe Based on Schiff Base for Dual Sensing of Zn2+ and CN-[J]. Chin. J. Anal. Chem., 2018,46(3):354-363.  

    18. [18]

      Xie H F, Yu C J, Huang Y L, Xu H, Zhang Q L, Sun X H, Feng X, Redshaw C. A Turn-Off Fluorescent Probe for the Detection of Cu2+ Based on a Tetraphenylethylene-Functionalized Salicylaldehyde Schiff-Base[J]. Mater. Chem. Front., 2020,4:1500-1506.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(5)
  • Abstract views(762)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return