Citation: Jin-Ge YANG, Yu-Jie LI, Yong LIU, Yu-Fang CHEN, Di LU, Wei-Wei SUN, Chun-Man ZHENG. Surface Modification and Electrochemical Properties of Li-Rich Layered Cathode Materials for Lithium-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1252-1260. doi: 10.11862/CJIC.2022.136 shu

Surface Modification and Electrochemical Properties of Li-Rich Layered Cathode Materials for Lithium-Ion Batteries

Figures(8)

  • A convenient, economical strategy of the "dipping-grinding-sliming" process followed by solid phase sintering was used for surface modification of Li-rich layered cathode materials Li1.2Mn0.54Ni0.13Co0.13O2. The experimental results expressed that compared with pristine material, the surface-modified cathode material exhibited satisfactory cyclic stability. It had an initial capacity of more than 280 mAh·g-1. After 70 charging-discharging cycles at 0.5C, it had capacity retention of 91.6%.
  • 加载中
    1. [1]

      Armand M, Tarascon J M. Building Better Batteries[J]. Nature, 2008,451(7179):652-657. doi: 10.1038/451652a

    2. [2]

      Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A. Advances in Manganese -Oxide 'Composite' Electrodes for Lithium-Ion Batteries[J]. J. Mater. Chem., 2005,15(23):2257-2267. doi: 10.1039/b417616m

    3. [3]

      Armstrong A R, Holzapfel M, Novák P, Johnson C S, Kang S H, Thackeray M M, Bruce P G. Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J. Am. Chem. Soc., 2006,128(26):8694-8698. doi: 10.1021/ja062027+

    4. [4]

      Kang S H, Johnson C S, Vaughey J T, Amine K, Thackeray M M. The Effects of Acid Treatment on the Electrochemical Properties of 0.5Li2MnO3·0.5LiNi0.44Co0.25Mn0.31O2 Electrodes in Lithium Cells[J]. J. Electrochem. Soc., 2006,153(6):A1186-A1192. doi: 10.1149/1.2194764

    5. [5]

      Johnson C S, Kim J S, Kropf A J, Kahaian A J, Vaughey J T, Thackeray M M. Structural and Electrochemical Evaluation of (1-x)Li2TiO3·(x) LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries[J]. J. Power Sources, 2003,119:139-114.

    6. [6]

      Liu H D, Wang J, Zhang X F, Zhou D, Qi X, Qiu B, Fang J H, Kloepsch R, Schumacher G, Liu Z P, Li J. Morphological Evolution of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size[J]. ACS Appl. Mater. Interfaces, 2016,8(7):4661-4675. doi: 10.1021/acsami.5b11389

    7. [7]

      Chen Z, Wang J, Chao D L, Baikie T, Bai L Y, Chen S, Zhao Y L, Sum T C, Lin J Y, Shen Z X. Hierarchical Porous LiNi1/3Co1/3 Mn1/3O2 Nano -/Micro Spherical Cathode Material: Minimized Cation Mixing and Improved Li+ Mobility for Enhanced Electrochemical Performance[J]. Sci. Rep., 2016,625771. doi: 10.1038/srep25771

    8. [8]

      Fu F, Yao Y Z, Wang H Y, Xu G L, Amine K, Sun S G, Shao M H. Structure Dependent Electrochemical Performance of Li-Rich Layered Oxides in Lithium-Ion Batteries[J]. Nano Energy, 2017,35:370-378. doi: 10.1016/j.nanoen.2017.04.005

    9. [9]

      Liu D, Wang F Y, Wang G, Lv C, Wang Z Y, Duan X C, Li X. Well-Wrapped Li-Rich Layered Cathodes by Reduced Graphene Oxide towards High-Performance Li-Ion Batteries[J]. Molecules, 2019,24(9)1680. doi: 10.3390/molecules24091680

    10. [10]

      Xu Z, Ci L J, Yuan Y F, Nie X K, Li J W, Cheng J, Sun Q, Zhang G F, Han G F, Min G H, Lu J. Potassium Prussian Blue-Coated Li-Rich Cathode with Enhanced Lithium ion Storage Property[J]. Nano Energy, 2020,75104942. doi: 10.1016/j.nanoen.2020.104942

    11. [11]

      Zhao J K, Wang Z X, Guo H J, Li X H, He Z J, Li T. Synthesis and Electrochemical Characterization of Zn-Doped Li-Rich Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode Material[J]. Ceram. Int., 2015,41(9):11396-11401. doi: 10.1016/j.ceramint.2015.05.102

    12. [12]

      Cui H F, Yin C, Xia Y G, Wei C G, Jiang W, Sun J, Qiu B, Zhu M Y, Liu Z P. Synergy Effects on Blending Li-Rich and Classical Layered Cathode Oxides with Improved Electrochemical Performance[J]. Ceram. Int., 2019,45(12):15097-15107. doi: 10.1016/j.ceramint.2019.04.250

    13. [13]

      Gallagher K, Kang S H, Park S U, Han S Y. xLi2 MnO3·(1-x)LiMO2 Blended with LiFePO4 to Achieve High Energy Density and Pulse Power Capability[J]. J. Power Sources, 2011,196(22):9702-9707. doi: 10.1016/j.jpowsour.2011.07.054

    14. [14]

      Wang Z Y, Liu E Z, Guo L C, Shi C S, He C N, Li J J, Zhao N Q. Cycle Performance Improvement of Li-Rich Layered Cathode Material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 Coating[J]. Surf. Coat. Technol., 2013,235:570-576. doi: 10.1016/j.surfcoat.2013.08.026

    15. [15]

      Wang Q Y, Liu J, Murugan A V, Manthiram A. High Capacity Double-Layer Surface Modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode with Improved Rate Capability[J]. J. Mater. Chem. A, 2009,19(28):4965-4972. doi: 10.1039/b823506f

    16. [16]

      Wang Z Y, Luo S H, Ren J, Wang D, Qi X W. Enhanced Electrochemical Performance of Li-Rich Cathode Li[Li0.2Mn0.54Ni0.13Co0.13] O2 by Surface Modification with Lithium Ion Conductor Li3PO4[J]. Appl. Surf. Sci., 2016,370:437-444. doi: 10.1016/j.apsusc.2016.02.139

    17. [17]

      Chong S K, Chen Y Z, Yan W W, Guo S W, Tan Q, Wu Y F, Jiang T, Liu Y N. Suppressing Capacity Fading and Voltage Decay of Li-Rich Layered Cathode Material by a Surface Nano-protective Layer of CoF2 for Lithium-Ion Batteries[J]. J. Power Sources, 2016,332(15):230-239.

    18. [18]

      Niu B B, Li J L, Liu Y Y, Li Z Y, Yang Z. Re-understanding the Function Mechanism of Surface Coating: Modified Li-Rich Layered Li1.2Mn0.54Ni0.13Co0.13O2 Cathodes with YF3 for High Performance Lithium-Ions Batteries[J]. Ceram. Int., 2019,45(9):12484-12494. doi: 10.1016/j.ceramint.2019.03.184

    19. [19]

      Song B H, Zhou C F, Chen Y, Liu Z W, Lai M O, Xue J M, Lu L. Role of Carbon Coating in Improving Electrochemical Performance of Li-Rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 Cathode[J]. RSC Adv., 2014,4(83):44244-44252. doi: 10.1039/C4RA04976D

    20. [20]

      Liang G M, Peterson V K, See K W, Guo Z P, Pang W K. Developing High-Voltage Spinel LiNi0.5Mn1.5O4 Cathodes for High-Energy-Density Lithium-Ion Batteries: Current Achievements and Future Prospects[J]. J. Mater. Chem. A, 2020,8(31):15373-15398. doi: 10.1039/D0TA02812F

    21. [21]

      Guo J L, Deng Z Y, Yan S P, Lang Y Q, Gong J J, Wang L, Liang G C. Preparation and Electrochemical Performance of LiNi0.5Mn1.5O4 Spinels with Different Particle Sizes and Surface Orientations as Cathode Materials for Lithium-Ion Batter[J]. J. Mater. Sci., 2020,55(27):13157-13176. doi: 10.1007/s10853-020-04973-0

    22. [22]

      Pei Y, Chen Q, Xiao Y C, Liu L, Xu C Y, Zhen L, Henkelman G, Cao G Z. Understanding the Phase Transitions in Spinel-Layered-Rock Salt System: Criterion for the Rational Design of LLO/Spinel Nanocomposites[J]. Nano Energy, 2017,40:566-575. doi: 10.1016/j.nanoen.2017.08.054

    23. [23]

      Sun Y K, Lee M J, Chong S Y, Hassoun J, Amine K, Scrosati B. The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries[J]. Adv. Mater., 2012,24(9):1192-1196. doi: 10.1002/adma.201104106

    24. [24]

      Wu F, Li N, Su Y F, Shou H F, Bao L Y, Wen Y, Zhang L J, An R, Chen S. Spinel/Layered Heterostructured Cathode Material for High-Capacity and High-Rate Li-Ion Batteries[J]. Adv. Mater., 2013,25(27):3722-3726. doi: 10.1002/adma.201300598

    25. [25]

      Ku L, Cai Y X, Ma Y T, Zheng H F, Liu P F, Qiao Z S, Xie Q S, Wang L S, Peng D L. Enhanced Electrochemical Performances of Layered-Spinel Heterostructured Lithium-Rich Li1.2Ni0.13Co0.13Mn0.54O2 Cathode Materials[J]. Chem. Eng. J., 2019,370:499-507. doi: 10.1016/j.cej.2019.03.247

    26. [26]

      YANG J G, LI Y J, LU D, CHEN Y F, SUN W W, ZHENG C M. Morphology Control and Lithium Storage Performance of Micro/Nano Li-Rich Cathode Material[J]. Chem. J. Chinese Universities, 2019,40(7):1249-1253.  

    27. [27]

      He H B, Cong H J, Sun Y, Ling Z, Zhang Y X. Spinel-Layered Integrate Structured Nanorods with Both High Capacity and Superior High-Rate Capability as Cathode Material for Lithium-Ion Batteries[J]. Nano. Res., 2016,10(2):556-569.

    28. [28]

      Yi L H, Liu Z S, Yu R Z, Zhao C X, Peng H F, Liu M H, Wu B, Chen M F, Wang X Y. The Li-Rich Layered/Spinel Heterostructured Special Morphology Cathode Material with High Rate Capability for Li-Ion Batteries[J]. ACS Sustainable Chem. Eng., 2017,5(11):11005-11015. doi: 10.1021/acssuschemeng.7b02906

    29. [29]

      Qiu B, Yin C, Xia Y G, Liu Z P. Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries[J]. ACS Sustainable Chem. Eng., 2017,9(4):3661-3666.

    30. [30]

      Wu B, Yang X K, Jiang X, Zhang Y, Shu H B, Gao P, Liu L, Wang X Y. Synchronous Tailoring Surface Structure and Chemical Composition of Li-Rich-Layered Oxide for High-Energy Lithium-Ion Batteries[J]. Adv. Funct. Mater., 2018,28(37)1803392. doi: 10.1002/adfm.201803392

    31. [31]

      Kuppan S, Shukla A K, Membreno D, Nordlund D, Chen G Y. Revealing Anisotropic Spinel Formation on Pristine Li- and Mn-Rich Layered Oxide Surface and Its Impact on Cathode Performance[J]. Adv. Energy Mater., 2017,7(11)1602010. doi: 10.1002/aenm.201602010

    32. [32]

      Pei Y, Xu C Y, Xiao Y C, Chen Q, Huang B, Li B, Li S, Zhen L, Cao G Z. Phase Transition Induced Synthesis of Layered/Spinel Heterostructure with Enhanced Electrochemical Properties[J]. Adv. Funct. Mater., 2017,27(7)1604349. doi: 10.1002/adfm.201604349

    33. [33]

      CHEN Y C. Research on Preparation and Doping Modification of LiMn2O4 Cathode Materials with High Power. Changsha: National University of Defense Technology, 2011.

  • 加载中
    1. [1]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    15. [15]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(10)
  • Abstract views(1165)
  • HTML views(298)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return